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Abstract
A study was conducted to examine spatial variability of soil properties related to fertility in maize fields across varying 
soil types in ward 10 of Hurungwe district, Zimbabwe; a smallholder farming area with sub-humid conditions and high 
yield potential. Purposively collected and geo-referenced soil samples were analyzed for texture, pH, soil organic carbon 
(OC), mineral N, bicarbonate P, and exchangeable K. Linear mixed model was used to analyze spatial variation of the 
data. The model allowed prediction of soil properties at unsampled sites by the empirical best linear unbiased predictor 
(EBLUP). Evidence for spatial dependence in the random component of the model was evaluated by calculating Akaike’s 
information criterion. Soil pH ranged from 4.0 to 6.9 and showed a strong spatial trend increasing from north to south, 
strong evidence for a difference between the home and outfields with homefields significantly higher and between soil 
textural classes with the sand clay loam fraction generally higher. Soil OC ranged from 0.2 to 2.02% and showed no spa-
tial trend, but there was strong evidence for a difference between home and outfields, with mean soil OC in homefields 
significantly larger, and between soil textural classes, with soil OC largest in the sandy clay loams. Both soil pH and OC 
showed evidence for spatial dependence in the random effect, providing a basis for spatial prediction by the EBLUP, which 
was presented as a map. There were significant spatial trends in mineral N, available P and exchangeable K, all increas-
ing from north to south; significant differences between homefields and outfields (larger concentrations in homefields), 
and differences between the soil textural classes with larger concentrations in the sandy clay loams. However, there was 
no evidence for spatial dependence in the random component, so no attempt was made to map these variables. These 
results show how management (home fields vs outfields), basic soil properties (texture) and other factors emerging as 
spatial trends influence key soil properties that determine soil fertility in these conditions. This implies that the best 
management practices may vary spatially, and that site-specific management is a desirable goal in conditions such as 
those which apply in Ward 10 of Hurungwe district in Zimbabwe.
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1  Introduction

Sustainable agriculture is essential to ensure food secu-
rity for the increasing population in sub-Saharan Africa 
(SSA) while reducing rural poverty and the degradation 
of natural resources [1]. However, the gradual decline 
of soil fertility in SSA soils induced by management, 
especially in intensively cropped areas, is a major cause 
of decreased yields and food production per capita [2]. 
This has led to undesirable mid- to long-term soil and 
environmental degradation [3]. Therefore, enhancement 
of the soil nutrient resource base through sound agro-
nomic management practices is vital to increase crop 
productivity and household food security in the small-
holder sector of Zimbabwe [4].

In nature, soil is inherently variable due to the varia-
tions in soil-forming processes at different spatial scales. 
Soil variability may also occur as a result of anthropo-
genic influences such as land use, cultivation and ero-
sion. Thus, the soil varies in space and time because of 
geochemical processes and soil management practices 
such as fertilization and irrigation [5, 6]. This has impli-
cations for how the soil should be managed. Challenges 
such as acidity, erosion risk, and input requirements, vary 
from place to place and an optimal response (for produc-
tivity, profitability and environmental impact) should be 
based on local soil information. Therefore variation of 
soil fertility properties must be examined to understand 
the effects of land use and management systems on soil 
functions [7, 8]. It is important to understand this varia-
tion and how far it reflects the influence of long-range 
factors. This might mean that recommendations for man-
agement should, in principle, differ between farms and 
between fields within farms, allowing more efficient, 
cost-effective, and less environmentally damaging use 
of agricultural inputs [9–12]. A better understanding of 
the variation of soil fertility could therefore help farmers 
to achieve increased soil productivity and the objectives 
of sustainable agriculture [13–15].

Smallholder farmers in SSA have different access to 
resources depending on resource endowment and may 
manage some fields differently from others [2, 16]. Most 
farmers are resource-constrained and often have access 
to limited amounts of inorganic and organic fertilizers 
which they therefore apply to the most productive fields 
at the expense of less productive fields whose fertility 
gradually declines. Strong gradients of decreasing soil 
fertility are usually found with increasing distance from 
the homestead as fields nearer to homesteads (home-
fields) preferably receive more nutrients. Homefields 
tend to have higher fertility and balanced nutrition com-
pared to fields further away from homesteads (outfields) 

[17–20]. However, cases where outfields are more fertile 
than homefields have also been reported [18].

The spatial variation of soil fertility properties can be 
investigated by geostatistical methods [21]. Whereas 
most conventional statistical methods treat observa-
tions as independent on the basis of an appropriate 
sampling design, geostatistics involves the modelling of 
spatial dependence in data, showing the spatial scales at 
which they vary [22]. On the basis of this spatial model, 
local predictions are created as an optimal combina-
tion of nearby observations which minimizes the mean 
squared error of the prediction, which is also calculated, 
the kriging variance [23]. Geostatistical methods thus 
produce spatial predictions of soil fertility properties 
which make the best use of the available data [24] and 
which allow one to account for the uncertainty in soil 
information based on limited sampling by computing, 
for example, the probability that a soil property at some 
location falls above or below some threshold value such 
as an advisory nutrient concentration index [25]. Geo-
statistical predictions, and the kriging variances which 
quantify their uncertainty, are useful information to sup-
port management decisions about soil, such as the local 
fertilizer requirement or risk of acidity problems [22]. By 
basing decisions on sound spatial information we should 
be able to improve productivity and profitability, and to 
reduce environmental impact of agriculture [26]. Thus, 
modern geostatistical methods provide a basis for map-
ping the spatial variation of the soil fertility properties 
on the basis of relatively limited sampling, and so pro-
viding information (with measures of uncertainty) which 
might help direct advice and management interventions 
better.

Ward 10 of Hurungwe District is typical of many small-
holder areas in Zimbabwe and SSA as a whole. There is 
little information on the variation of soil fertility properties 
and recommendations are generally uniform so might be 
suboptimal in many places. Also, due to variation in farm-
ers’ resource endowment, some fields may receive more 
inputs than others. In Zimbabwe, little work has been 
done to examine the spatial variation of soil nutrient sta-
tus and pH at these scales using the methods of spatial 
statistics [3, 17, 18]. The aim of this study was to examine 
how some key soil fertility properties vary spatially. The 
objectives of the study were to determine if there were: (1) 
trends or other long-range variations which might mean 
that recommendations should vary across the ward. (2) 
differences between homefields and outfields that may 
contribute substantially to this variation (3) other factors 
such as soil texture that may also contribute to this varia-
tion. Lastly, soil fertility properties that showed evidence 
for spatial dependence were mapped using geostatistics 
and geographic information system (GIS) facilities.
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2 � Materials and methods

2.1 � Study site description

The study was conducted in ward 10 of Hurungwe District 
which is located about 235 km north-west of Harare and 
lies between 16 and 17oS and 29° E and 30° E (Fig. 1) and 
covers an area of 252.9 km2. The area is predominantly 
under smallholder farming. Zimbabwe is demarcated 
into five agro-ecological zones based on rainfall and yield 
potential for crop production [27]. The study location is 
in Agro-ecological zone II. The climate is sub-humid, with 
annual average rainfall of 750–1000  mm and a mean 
annual temperature of 16–19 °C. It has large potential for 
crop yields and is suitable for intensive cropping and live-
stock production.

Soils in the ward 10 of Hurungwe District are mainly 
granitic sands, Lixisols in the FAO-UNESCO classification 
[28, 29], with inherently poor nutrient supply potential 

but there are some smaller exceptional areas with fer-
tile clay soils (Luvisols in the FAO-UNESCO classification) 
derived from dolerite intrusions [30].

Production systems in the area characteristically inte-
grate livestock and crops, with cattle and goats as the 
dominant livestock whilst maize (Zea mays L.) is the main 
crop. Livestock that are kept in kraals near the home-
stead provide manure for soil fertility enhancement 
while in winter, when grazing areas are inadequate, 
crop residues in the individually owned but commu-
nally grazed fields provide supplementary feed to the 
livestock. Other crops grown in the area include tobacco 
(Nicotiana tabacum L), groundnut (Arachis hypogaea L), 
cowpea (Vigna unguiculata (L) Walp.), soyabean (Glyxine 
max L.), common bean (Phaseolus vulgaris L.), bambara 
nut (Vigna subterranean (L) Verdc.) and cotton (Gossyp-
ium hirsutum L.).

Fig. 1   Study area of ward 10 in Hurungwe district, Zimbabwe
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2.2 � Sampling sites selection procedure

An appropriate sampling design depends on the objec-
tives of the study and the methods which are to be used 
to analyze the data. In this case, our objective was to char-
acterize the spatial variation of soil properties in fields 
used to grow maize across the sample domain (Ward 10), 
and, where possible, to map this variation spatially. The 
data were to be analyzed using model-based geostatisti-
cal methods [31]. Sampling to support such analyses does 
not require a probability sample (in the sense of [32] to 
allow assumptions of independence precisely because 
the model does not assume independence of the observa-
tions but models their spatial correlation. Furthermore, the 
objective of spatial mapping is best-served by a sampling 
design which gives good spatial coverage. Our sampling 
was therefore purposive in the sense of de Gruijter et al. 
[32] in that sample units were selected to support the 
objective of spatial mapping.

The sample frame was defined as all fields used to grow 
maize in seven villages in ward 10 in the 2017–2018 grow-
ing season. There are eleven villages in the ward, in the 
four excluded villages most farmers grew crops other than 
maize, predominantly tobacco. Within this sampling frame, 
sampling was exhaustive at field level. That is to say, all 
fields where maize was grown in the season under inves-
tigation were sampled. The identification of these fields 
was facilitated by the farmers and agricultural extension 
officials in the Ministry of Lands, Agriculture, Water and 
Rural Resettlement from Hurungwe District of Zimbabwe. 
Because all units in the sample frame were selected the 
sample design, at field level, does not introduce bias.

Within each field, sampling was undertaken in a circular 
plot of radius 10 m centred at the middle of the field to 
avoid any edge effects. The size and shape of the volume 
of material from which a sample is drawn is called the sam-
ple’s support in geostatistics. All statistics are conditional 
on the support. Had we sampled from a smaller area in 
each field than we used we would expect the variance of 
the data to be larger than we observed. For geostatistical 
mapping, using the methods described below, a sample 
support which is small relative to the region of interest is 
required. It is also important that the sample support is 
consistent over all the observations; otherwise, we cannot 
assume a fixed variance of the variable, under the station-
arity assumptions of the statistical model that we use. This 
is the reason for not forming a composite sample across 
the whole of each field, as these vary markedly in shape 
and size.

Within the plot 10 soil cores were collected from loca-
tions selected by simple random sampling. These cores 
were then combined into a single composite sample. The 
cores were collected by auger over the depth interval of 

0–15 cm which is the layer normally sampled for soil test-
ing and fertilizer recommendations purposes in the small-
holder sector [33]. A GPS was used to record the location 
of the central point of the plot.

A total of 250 fields were sampled in this way. Because 
some farmers no longer grow crops on outfields, due to 
lack of adequate resources such as seed, labour, draft 
power etc., most of the selected fields were homefields 
(178) with a smaller number of outfields (72). Homefields 
were on average less than 50 m away from the homesteads 
and on fairly flat slopes (< 2%) ranging from 0.1 to 0.4 ha 
in area. Most outfields were fairly on flat slopes (< 2%) and 
more than 1 km away from the homesteads with fields 
ranging from 0.4 to 2 ha in area.

The total sampled area in this study is characteristic of 
the agro-ecological zone to which it belongs, and a sub-
stantial sample effort has been concentrated in one ward 
to allow the spatial analysis to be undertaken, and to gain 
insight into spatial variation of soil fertility properties in 
this setting.

2.3 � Sample preparation and analysis

The collected samples were air-dried and crushed using a 
wooden pestle and mortar to pass through a 2-mm sieve 
and were stored in paper bags at room temperature. The 
samples were then analyzed for particle size distribution 
(hydrometer method), pH (0.01 M CaCl2 method), organic 
C (modified Walkely–Black method) [34], KCl-extracta-
ble N (incubation technique) [35], bicarbonate P (resin 
membrane technique) [36] and exchangeable K (acidi-
fied ammonium acetate method with the concentration 
determined by atomic emission spectrophotometry [34].

2.4 � Statistical and geostatistical methods

The data were analyzed using a linear mixed model (LMM) 
[37] and Pearson’s correlation analysis to reveal the mag-
nitude and direction of relationships between soil fertil-
ity properties was computed with GenStat version 14 
statistical software (Lawes Agricultural Trust, Rothamsted 
Experimental Station, UK). In LMM analysis the variable of 
interest is treated as a linear combination of fixed effects 
(which define the expected value) and random effects. In 
this study, we considered a random effects model with a 
spatially correlated random component, in addition to an 
independently distributed residual term [38]. For models 
with such a random effect, the value of the variable of 
interest can be computed for an unsampled site (for which 
the fixed effects are defined) by a process equivalent to the 
kriging interpolation method used in geostatistics [23]. In 
the mixed model setting, this is called the empirical best 
linear unbiased prediction (EBLUP).
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The linear mixed model may be written as

where z is our vector of observations, length n, � is known 
as the design matrix of the fixed effects,  � is the vector of 
the fixed effects coefficients, � a normal random variable 
which has a mean of zero, a variance of c1 and an autocor-
relation matrix which expresses the spatial dependence 
of the variable and ε is an independently and identically 
distributed normal residual, known as the nugget effect 
in a geostatistical context. The nugget effect has mean 
zero and variance c0. The estimation of this model makes 
the assumption of second-order stationarity [23]. This 
requires that any systematic spatial trend in the variable 
z is reflected in the fixed effects. For example, if there is 
a linear trend in the variable from north to south, then 
this may be captured by a design matrix M which consists 
of a column of entries all equal to one, and a second col-
umn which contains the northings of the observations. In 
this case the coefficients in � correspond to the intercept 
and slope of a linear regression on the northing. The fixed 
effects may also be factors (categorical variables). We do 
not discuss how the LMM is fitted in detail, and refer the 
reader to Lark et al. [38] and Webster and Oliver [23]. In 
summary, we assumed that the autocorrelation matrix of 
� can be characterized by an exponential correlation func-
tion such that the correlation between two observations 
separated by distance h is given by

where ϕ is a distance parameter. The correlation between 
values of the random effect decays to small values at dis-
tances in excess of 3 × ϕ. The parameters 3 × ϕ, c0 and c1 
are estimated by residual maximum likelihood. These esti-
mates are then used to obtain generalized least squares 
estimates of the coefficients in � and their standard errors 
[− 0.2, 0.2].

We undertook exploratory analysis of the data, com-
puting summary statistics. These comprise the mean, 
median, standard deviation, coefficient of skewness 
and the octile skewness due to Brys et al. [39]. The lat-
ter is particularly useful as a robust statistic to meas-
ure the asymmetry of the distribution of data without 
undue influence of a few outlying values. The analysis 
of spatial data with the linear mixed model makes an 
explicit assumption that the random variation of the 
observations conforms to a normal distribution. While 
the modelling process is quite robust to deviations from 
that assumption [40], the efficiency of model estima-
tion is reduced if data are strongly skewed. Following 
Webster and Lark [41], we considered transformation to 

(1)� = �� + �� + �,

(2)�(h) = e
−
h
∕�,

for variables with an octile skewness outside the range 
[− 0.2, 0.2]. Predictions on the log-scale are of limited 
use to farmers or other stakeholders, and so predictions 
of variables which had been transformed this way were 
back-transformed to the original units by simple expo-
nentiation following Pawlowsky-Glahn and Olea [42]. 
This is recommended because the resulting prediction 
is median unbiased, which is particularly suitable for 
a skewed variable. We also examined plots of the data 
values against eastings and northings to identify any 
potential trends.

The first model that we considered for any variable had 
a constant mean as a fixed effect, so M is a n × 1 vector, all 
elements set to one. However, in some cases, this was not 
a plausible model. Exploratory analysis suggested a pos-
sible trend north to south in Ward 10, and the variance 
parameter c1 tended to a large value, with an associated 
large value of ϕ. This is suggestive of a spatial trend, and so 
a model was considered in which a second column of the 
design matrix contained the latitudes of the observations.

Having established a basic “null” model for the 
data (with the only fixed effect a constant mean, or a 
north–south trend), we then considered including an 
effect of location (homefield or outfield). To do this we 
added a further column to the design matrix which takes 
the value 1 for all outfield samples, and zero otherwise. 
The corresponding fixed effects coefficient is the mean 
difference between outfields and homefields. To test 
the significance of the location effect we computed a 
log-likelihood ratio statistic to compare the null model 
with the full model including the location effect. This 
was done with a recomputation of the null model so that 
the residual likelihoods were comparable, following the 
approach proposed by Welham and Thompson [43]. The 
log-likelihood ratio statistic has an asymptotic chi-square 
distribution if the null model is correct, with degrees of 
freedom equal to the number of additional parameters 
in the fitted model (one here), so a test of evidence for 
the fitted model can be conducted.

We then evaluated the evidence for a spatially depend-
ent random effect in the model by calculating Akaike’s 
information criterion (AIC) [44] for the fitted model and 
for an alternative in which the only random effect was an 
independent nugget component. The model with a corre-
lated random effect will have at least a larger residual log-
likelihood than the model with an independent random 
effect only, but it is also more complex, with an additional 
parameter. Akaike’s information criterion is given by

where P is the number of parameters in the model and L 
is the log of the maximum likelihood. The criterion can be 

(3)A = 2P − 2L,
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used to compare models for the same data with different 
numbers of parameters. The model is preferred for which 
A is smallest, and this is a pragmatic rule for selecting a 
model for prediction, as the alternative expected to be 
closest to the unknown model generating the data [45]. 
The use of AIC to select between alternative geostatistical 
models is recommended by standard texts (e.g. [23]. If this 
was the model with a correlated random effect, then this 
model was used to compute predicted values of the target 
variable on a grid of points across Ward 10, by the EBLUP. 
Two sets of predictions were computed, one assuming a 
homefield, and the other assuming that the target point 
was in an outfield. The EBLUP computation also returns 
a prediction error variance. Assuming normal prediction 
errors, one can use this to compute the probability that 
the true value at a target location falls above or below a 
threshold.

We then considered an additional fixed effect, the soil 
texture class. The significance of soil texture was tested 
by the log-likelihood ratio test described above. We then 
computed expected value of the soil fertility property 
for each texture class and for homefields or outfields. 
In the case where a spatial trend model had also been 
fitted we computed the expected value for a location at 
the mean latitude and at the 10th and 90th percentile of 
latitudes in the sample. The 95% confidence intervals for 
these expected values were also computed. By plotting 
these values it is possible to visualize the variation of 

the soil fertility properties associated with spatial trend, 
soil texture and management (outfields or homefields).

3 � Results

3.1 � Descriptive statistics

Table 1 summarizes descriptive statistics for soil physico-
chemical properties of 250 soil samples collected from 
Ward 10 in Hurungwe District. Soil pH ranged from 4.0 
to 6.9, SOC ranged from 0.2 to 2.02%, mineral N ranged 
from 7 to 120 mg kg−1, soil available P ranged from 1 to 
230 mg kg−1 and exchangeable K ranged from 0.08 to 
1.76 meq/100 g. Data for organic carbon, available P and 
exchangeable K were transformed to logarithms because 
octile skewness was larger than 0.2 (although note that K 
remained quite strongly skewed even after transformation 
with an octile skewness value of 0.26). Soil variability data 
in Table 1 indicate moderate variability for all soil fertility 
properties measured, as suggested by Wang et al. [46]. A 
variable is considered weakly variable, moderately vari-
able or strongly variable when the coefficient of variance 
(CV) % is less than 10%, between 10 and 100%, and above 
100%, respectively.

Table 2 shows the Pearson’s correlation coefficients 
among the five variables. The results indicated a signifi-
cant (p < 0.001) and weak positive correlations between 
soil pH and organic C (r = 0.35), soil pH and exchangeable 

Table 1   Summary statistics of 
selected soil fertility properties 
in ward 10 of Hurungwe 
district, Zimbabwe

*SD = standard deviation, CV = coefficient of variation

Variable Mean Median SD CV (%) Skewness Octile skewness

pH 5.36 5.35 0.64 11.94 0.25 0.00
Org. carbon/% 0.698 0.608 0.422 60.46 0.91 0.27
Org. carbon/log %  − 0.564  − 0.564 0.688  − 121.99  − 0.63  − 0.04
Mineral N/mg kg−1 26.7 25.0 10.1 37.83 0.96 0.18
Pav/mg kg−1 43.4 28 40.2 92.63 1.8 0.53
Pav/log (mg kg−1) 3.37 3.33 0.947 28.10  − 0.30 0.05
Kex/mEq 100 g soil−1 0.388 0.270 0.289 74.48 1.97 0.60
Kex/log( mEq 100 g soil−1)  − 1.15  − 1.31 0.61 53.04 0.65 0.29

Table 2   Pearson correlation 
coefficient among selected 
soil fertility properties in 
ward 10 of Hurungwe district, 
Zimbabwe

*Organic C = organic carbon, Exch. K = exchangeable potassium, **Correlation is significant at the 0.01 
level (2 tailed); ***Correlation is significant at the 0.001 level (2 tailed)

pH (CaCl2) Organic C (%) Mineral N (mg kg−1) Available P (mg kg−1)

pH (CaCl2)
Organic C % 0.3471***
Mineral N (mg kg−1) 0.1357 0.2046**
Available P (mg kg−1) 0.5564*** 0.2436**  − 0.0630
Exch. K (meq/100 g) 0.3909*** 0.4371*** 0.0038 0.3352***
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K (r = 0.39), organic C and exchangeable K (r = 0.44) and 
available P and exchangeable K (r = 0.34). Moreover, there 
was a significant (p < 0.001) and moderate positive correla-
tion between soil pH and available P (r = 0.56). Lastly the 
results indicated a significant (p < 0.01) and weak positive 
correlation between organic C and mineral N (r = 0.20) and 
organic C and available P (r = 0.24).

3.2 � Linear mixed model

The null model for soil pH included a north–south trend. 
Note (Table 3a) that the estimated coefficient for latitude 
is large compared to its standard error, so the evidence 
for this trend is strong, with pH increasing north to south. 
The effect of location (homefield or outfield) was strongly 
significant (p < 0.0001) with the soil of outfields on average 
0.34 pH values smaller than homefields. There was also 
strong evidence for a difference between the soil texture 
classes, (Fig. 2a); sands were the most acid and sandy clay 
loams the least, the latter with a pH nearly 0.5 units larger 
on average than that for sands. Note that the spatial trend 
between north and south is of similar size to the texture 
class effect. However, both the spatial trend and the tex-
ture effect are significant in the model, so the trend is not 
accounted for purely in terms of variations in soil texture. 
There is potential variation of soil pH of over 1.5 units from 
sandy clay loam soils in a homefield in the south of the 
ward (expected to be in the Neutral class), to coarser tex-
tured outfields in the north of the ward (expected to be in 
the Strongly Acid class). Table 4 shows that, of models for 
soil pH with north–south trend and the location the only 
fixed effect, the model with spatially correlated random 
effects had the smallest AIC. The difference is very small 
but, nonetheless, shows that the larger likelihood for this 
model cannot be attributed just to its greater complex-
ity. The small difference in the AIC is consistent with the 
small value for the correlated variance (an order of mag-
nitude smaller than the nugget variance), that is to say 
the variance of soil pH around the north–south trend is 
dominated by uncorrelated noise. Under these circum-
stances the EBLUP, computed from all the data will be very 
close to the predictions based on the trend model only. 
However, given the smaller value of AIC, it is preferable 
to use the model which accounts for spatial dependence 
in the error terms as this avoids the risk of bias in the vari-
ance estimates (from treating the errors as independent). 
The prediction error variances that we have computed are 
reliable, and quantify the inevitable uncertainty in predic-
tions from variable data. We computed the EBLUP values 
for soil pH on a fine grid on Ward 10 bounded by the mini-
mum and maximum latitude in the set of observations. 
Figure 3 shows the predicted values, and Fig. 4 shows the 

prediction error variances. The probability that soil pH is 
5 or less (strongly or very strongly acid) is shown in Fig. 5.

There was no evidence to incorporate a trend in the 
case of soil organic carbon, but as for pH there is strong 
evidence for a difference between homefields and out-
fields, and between soil textural classes (Table 3b). As seen 
in Fig. 6, the effect of soil texture is particularly marked. The 
expected value for sandy clay loams falls in the Medium 
to High organic carbon category, whilst sandy soils are 
expected to have Very Low carbon content, particularly 
outfields. As seen in Table 4, there was evidence for spatial 
dependence in organic carbon content, and so the EBLUP 
predictions were mapped as for soil pH (see Figs. 7, 8, 9, 
10) after back-transformation.

For mineral nitrogen, available P and exchangeable 
K there was evidence for a north–south trend, for differ-
ences between homefields and outfields and for differ-
ences between soil texture classes. Again, the expected 
values (back-transformed to median-unbiased values 
on the plots in Fig. 2) show that differences due to spa-
tial trends, soil texture and management are all of similar 
order, and span intervals which are significant in terms of 
judgements about nutrient deficiency. However, none of 
these nutrients showed evidence for a spatially dependent 
random effect, and so no attempt was made to produce a 
map (which would simply exhibit the north–south trend).

4 � Discussion

Soil pH was significantly and positively correlated with 
soil OC. This could be due to the ability of soil OC and soil 
organic matter hydroxyl groups released during stabiliza-
tion to buffer against acidity [47]. It is also possible that 
farmers are adding more input of plant residues to less 
acid soils which are better for crop production. However, 
our finding differs from Shi et al. [48] and Zhang et al. [49] 
who noted that soil OC content was significantly and neg-
atively correlated with pH and concluded that acidification 
inhibits soil OC decomposition,thus, C loss from soils is 
insignificant. The divergence may be attributed to varia-
tions in soil type and climatic conditions. The significant 
and positive correlation between pH and exchangeable K 
and pH and available P could be related to the geochemi-
cal processes that influence reactivity and solubility of 
nutrients. Low pH result in reduction in CEC and defi-
ciency of K and increase acidity-induced P-fixation [33, 50]. 
Furthermore organic C and mineral N and organic C and 
available P were positive correlated in accordance with the 
results reported by Metwally et al. [51]. This shows that soil 
OC is an important parameter of the soil which affects soil 
physical, chemical and biological properties influencing 
soil nutrients’ availability [52].
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Table 3   Inferences about fixed effects and their estimates in linear 
mixed models fitted for each soil property; a pH, b organic car-
bon, c soil mineral nitrogen, d Available P, e Exchangeable K. Fixed 
effects are listed in the first column. The second two columns pro-
vide fixed effects coefficients (estimate) and their standard errors 
(SE) for those fixed effects in the null model (either a constant 
mean, or a constant with a trend with latitude). The next two col-
umns consider the effect of adding location (homefield or outfield) 
as a fixed effect to the terms in the null model. The first three rows 

provide the log-likelihood ratio statistic, degrees of freedom and 
p-value for the null hypothesis of no effect of adding location. The 
remaining columns contain the fixed effects coefficients and their 
standard errors for the model with location added. Similarly, the 
final two columns of the table provide the statistics to test the null 
hypothesis of no difference between the soil textural classes, and 
the estimates and standard errors for the fixed effects coefficients 
of the linear mixed model with textural class added

(a). pH Log-likelihood ratio test for added effects
Null model Add location Add texture

L 16.05 12.8
d.f 1 3
P 6.2 × 10−5 5.1 × 10−3

Fixed effect Estimate SE Estimate SE Estimate SE
Intercept  − 249.4 55.8  − 243.3 53.5  − 207.9 40.7
Latitude  − 15.1 3.3  − 14.8 3.2  − 12.7 2.4
Location (out)  − 0.34 0.08  − 0.34 0.08
Texture S  − 0.16 0.09
Texture SCL 0.28 0.11
Texture SL 0.05 0.10

(b). Organic carbon (log) Null model Log-likelihood ratio test for added effects
Add location Add texture

L 8.14 41.3
d.f 1 3
P 4.0 × 10−3 5.6 × 10−9

Fixed effect Estimate SE Estimate SE Estimate SE
Intercept  − 0.59 0.16  − 0.46 53.5  − 0.53 0.09
Location (out)  − 0.28 0.10  − 0.29 0.09
Texture S  − 0.20 0.10
Texture SCL 0.66 0.12
Texture SL 0.05 0.11

(c). Soil mineral N Null model Log-likelihood ratio test for added effects
Add location Add texture

L 5.36 67.2
d.f 1 3
P 0.02 1.7 × 10−14

Fixed effect Estimate SE Estimate SE Estimate SE
Intercept  − 2554.7 432.9  − 2505.8 434.1  − 2083.0 301.8
Latitude  − 153.0 25.7  − 150.2 17.3  − 125.2 17.9
Location (out)  − 2.13 0.58  − 2.23 0.58
Texture S  − 3.96 0.66
Texture SCL  − 1.33 0.81
Texture SL 2.03 0.74

(d). Avail-
able P 
(log)

Null model Log-likelihood ratio test for added effects

Add location Add texture

L 13.7 9.70

d.f 1 3

P 2.1 × 10−4 0.02
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Table 3   (continued)

Fixed 
effect

Estimate SE Estimate SE Estimate SE

Intercept  − 156.3 59.9  − 154.3 58.4  − 147.0 59.8
Latitude  − 9.47 3.55  − 9.36 3.46  − 8.91 3.55
Location 

(out)
 − 0.48 0.13  − 0.487 0.126

Texture S 0.280 0.143
Texture 

SCL
0.488 0.176

Texture SL 0.343 0.161

(e). Exchangeable K (log) Null model Log-likelihood ratio test for added effects
Add location Add texture

L 7.0 19.0
d.f 1 3
P 8.0 × 10−3 2.8 × 10−4

Fixed effect Estimate SE Estimate SE Estimate SE
Intercept  − 155.4 47.4  − 137.0 37.3  − 97.8 37.5
Latitude  − 9.14 2.81  − 8.06 2.21  − 5.73 2.22
Location (out)  − 0.25 0.08  − 0.247 0.079
Texture S  − 0.100 0.100
Texture SCL  − 0.390 0.110
Texture SL 0.145 0.101

*SE = standard error; S = sand; SCL = sandy clay loam; SL = sandy loam; L = latitude; d.f = degrees freedom; P = probability
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Fig. 2   Expected values of a pH; b mineral N; c available P and d 
exchangeable K with 95% confidence intervals. In each plot the 
values are in groups for different soil texture classes (S = sand, 
LS = loamy sand, SL = sandy loamy, SCL = sandy loam clay). The solid 
symbols are homefields and the open symbols are outfields. The 

homefields or outfields within any textural class are for the 10th 
percentile of latitude, mean latitude and 90th percentile of latitude 
from left to right (south to north). In the case of Figures; c and d 
the expected values are transformed back to the original scales of 
measurement and so are median-unbiased
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Table 4   Estimates of the random effects parameters for spatial lin-
ear mixed models for soil properties with fixed effects including 
location (homefield or outfield) and latitude where the latter was 
included in the null model. The random effects parameters are a 
distance parameter ϕ; the uncorrelated “nugget” variance c0; and 

the correlated variance c1. Akaike’s information criterion, AIC, see 
Eq. (3), for the spatial model, and for a linear mixed model with the 
same fixed effects but the only random effect an identically and 
independently distributed error (non-spatial) are also presented

*Org. carbon = organic carbon, Pav = available P, Kex = exchangeable potassium

Variable Fixed effects ϕ/km c0 c1 AICspatial AICnon-spatial

pH Latitude, location 2.3 0.31 0.03  − 472.6  − 472.4
Org. carbon/log % Location 9.6 0.42 0.10  − 398.4  − 391.2
Mineral N/mg kg−1 Latitude, location 8.4 16.4 2.4 1686.9 1646.5
Pav/log (mg kg−1) Latitude, location 8.3 0.83 0.00  − 241.7  − 243.7
Kex/log(mEq 100 g soil−1) Latitude, location 10.9 0.34 0.00  − 463.3  − 465.3

Fig. 3   Maps showing the best linear unbiased prediction of soil pH across ward 10 of Hurungwe district based on the linear mixed model for 
that variable presented in Table 4. Mapped values are for a homefields and b outfields
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The pH data show quite a strong trend from north to 
south, relative to the sampled fields map (as shown in 
Fig. 3) and there is evidence for spatial dependence around 
this trend. The climate of the study area (for both the north 
and south) is the same but soil type changes significantly 
as we move from north to south [27, 30]. The northern part 
of ward 10 consists mostly of sand and loamy sands which 
are prone to leaching resulting in low pH. Soil texture does 
vary north to south, but that both the trend and texture 
are significant in the model so the north–south trend can-
not be entirely due to differences in the sand content of 
the soil. The strong evidence for pH difference between 
the soil texture classes could be related to variations in 
buffering capacity and cation exchange capacity of the soil 

types [30]. Sandy soils with low pH buffering capacity tend 
to be most acid with sandy clay loams usually associated 
with an increased CEC having high soil pH [53]. Therefore, 
site specific management of soil pH for improved crop pro-
ductivity is imperative in Ward 10 of Hurungwe district. 
Figure 5 shows that liming is urgently required in some 
parts (those with high probability that pH < 5) of Ward 10, 
but not all. The strong evidence for difference between 
homefields and outfields in terms of soil pH may be attrib-
uted to management of different field locations by small-
holder farmers. Preferential addition of limited soil fertility 
amendments, such as organic material and lime to small 
areas around the homesteads at the expense of outfields 
is common in the smallholder sector [18, 54].

Fig. 4   Maps showing the prediction error variances for the predicted values of soil pH (shown in Fig.  3 for a homefields and b outfields 
across ward 10 of Hurungwe district



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:396 | https://doi.org/10.1007/s42452-021-04367-0

Soil OC is very variable spatially because it is affected by 
soil texture, vegetation, topography and management [55, 
56]. The linear mixed model shows that there was strong 
evidence for a difference between home and outfields, 
and between soil textural classes (Table 3b) and spatial 
dependence in the random component of the model 
(Table 4). These findings suggest that soil OC was affected 
by both the natural processes occurring in the cropping 
environment and human activities. Lack of clay-induced 
physical protection of soil OC from microbes accelerates 
mineralization in sandy soils resulting in very low carbon 
content [57]. Soil OC concentrations are also smaller in 
outfields where limited organic resources are added. This 
variation in soil OC, related to both texture and manage-
ment, will have implications for fertilizer requirement [58], 

Fig. 5   Maps showing the probability that soil pH < 5 for a homefields and b outfields across Ward 10 of Hurungwe district. These probabili-
ties are from the conditional distribution of pH at these locations given the map for the variable presented in Fig. 3 and the soil data

and information on soil OC variation could therefore sup-
port more targeted fertilizer recommendations.

Mineral N, available P and exchangeable K showed no 
evidence for a spatially dependent random effect in Ward 
10, but there are trends from north to south, and there 
are differences between textural classes and between 
homefields and outfields for all these nutrients (Fig. 2). 
The differences between homefields and outfields and 
between soil texture classes in terms of N, P and K can be 
attributed to variations in resource allocation, CEC, leach-
ing, K retention on soil exchangeable complex and acid-
induced P fixation of the soil [50, 59, 60]. This variation 
seems particularly significant in the case of P. For example, 
considering sandy loams, a homefield in the south may be 
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expected to be high in P, whereas an outfield in the north 
is expected to be marginal to deficient. Potassium is also 
variable but it is acutely deficient or deficient everywhere, 
so the variation is of limited practical relevance.

Our results show that there is spatial variation in soil 
nutrient status, pH and organic carbon content across 
Ward 10. Some of this variation may have implications 
for optimal soil management, consider, as noted above 
the range of variation in soil P content, and also in pH. 
Not all variation is relevant, consider the example of soil K 
which varies with space, but which is inadequate for crop 
production across the ward. However, such intensive soil 
sampling as done in this study may not be feasible ward-
by-ward to support agricultural extension. Furthermore, 
it is known that the uncertainty of field-scale estimates of 
soil properties may be such that field-specific recommen-
dations, at least in the case of very variable fields under 0.
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Fig. 6   Expected values of soil organic carbon content backtrans-
formed to the original scale of measurement with 95% confidence 
intervals. The values are in groups for different soil texture classes 
(S = sand, LS = loamy sand, SL = sandy loamy, SCL = sandy loam clay). 
The solid symbols are homefields and the open symbols are outfields

Fig. 7   Maps showing the best linear unbiased prediction of soil OC across ward 10 of Hurungwe district based on the linear mixed model 
for that variable presented in Table 4. Mapped values are for a homefields and b outfields
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smallholder production, are not feasible, [61]. However, 
our results suggest that one might identify important vari-
ation by the analysis of aggregated soil samples across soil 
types, for broader regions within the ward and according 

to management history, and that, in collaboration with 
farmers who readily recognize heterogeneity in soil fertil-
ity and crop growth present in their fields [62], it should be 
possible better to match recommendations to soil condi-
tions than would be achieved by uniform recommenda-
tion at the scale of the ward, or coarser.

Fig. 8   Maps showing the prediction error variances for the predicted values of soil OC (shown in Fig. 7) for a homefields and b outfields 
across Ward 10 of Hurungwe district
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5 � Conclusion

The study showed that spatial variation in selected soil 
fertility properties namely soil pH, OC, mineral N, avail-
able P and exchangeable K, can be identified at Ward 
scale, and related to both basic properties of the soil and 
soil management. The soil fertility properties showed 
long-range variations, and, in some cases, spatially 

dependent variations about these trends. Field loca-
tion, that is homefields and outfields, and soil texture 
contributed substantially to this variation. Generally 
homefields and sandy clay loam soil had more fertile 
conditions (larger nutrient and OC concentrations and 
higher pH) compared to the outfields and other soil tex-
ture classes respectively. This variation can be mapped 

Fig. 9   Maps showing the probability that that soil OC < 0.75% for a 
homefields and b Outfields across ward 10 of Hurungwe district. 
These probabilities are from the conditional distribution of soil OC 

at these locations given the map for the variable presented in Fig. 7 
and the soil data
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using the linear mixed model, and represented in a GIS 
environment. This could provide a basis for improved 
recommendation on fertilizer rates, lime requirement 
and other management decisions. The importance of 
differences between soil texture classes and manage-
ment could also provide a basis for more effective rec-
ommendations based on coordinated sampling across 
Wards rather than attempting to estimate properties 

within variable individual fields. Finally, we note that 
one must be cautious offering recommendations for 
N, P and K based on a single sample, as these proper-
ties are temporally variable, reflecting weather and 
management-driven processes. Soil information gener-
alized appropriately, should be interpreted by farmers 
and their advisors, based on the farmer’s understanding 
of heterogeneity in soil fertility and crop growth present 
in their fields.

Fig. 10   Maps showing the probability that soil OC < 0.5% for a homefields and b outfields across ward 10 of Hurungwe district. These prob-
abilities are from the conditional distribution of soil OC at these locations given the map for the variable presented in Fig. 7 and the soil data
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