Single Site Catalyst Supported in Mesoporous UiO-66 for Catalytic Conversion of Carbon Dioxide to Formate

Maureen Gumbo, Edward Ocansey, Banothile C.E. Makhubela, Francoise M. Amombo Noa, Lars Öhrström, Obieda S. Mudraj, and Gift Mehlana

Abstract

Carbon dioxide utilisation strategies are of paramount importance, yielding various products such as methanol and formate. Formate is an excellent hydrogen carrier in fuel cells, making it a highly exploitable chemical on the hydrogen energy storage front. Formate has an energy content that is at least five times greater than that of commercially available lithium-ion batteries. Herein, we have prepared mesoporous metal-organic frameworks (MOFs) (m-UiO-66 and m-UiO-66-NH2), using a Zr-based secondary building unit (SBU) and terephthalate linkers. The MOFs were used to support the half-sandwich (tetrazolylpyridyl)iridium(III) complex to make single-site catalyst (Ir(III)@m-UiO-66 and Ir(III)@m-UiO-66-NH2) for CO2 conversion to formate. Both Ir(III)@m-UiO-66 and Ir(III)@m-UiO-66-NH2 exhibited improved activity for CO2 hydrogenation to formate in a heterogeneous system. Ir(III)@m-UiO-66-NH2 and Ir(III)@m-UiO-66 had turnover numbers of 3313 and 3076 TON, respectively, under optimized conditions. X-ray photoelectron spectroscopy (XPS) showed possible interaction of the complex with the MOF as evidenced by a downfield shift in the binding energies of the Ir 4f electronic environment. The catalysts showed post-catalysis stability, as confirmed by PXRD, FTIR, and XPS. The Ir 4f binding energies of the materials after catalysis showed an up-field shift confirming the presence of Ir-H species which are the active species for catalysis.