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Abstract

Background
Sound management of protected areas is crucial for biodiversity conservation. In savanna systems, �re is
common, yet little is known on the direct and long-term effects of prescribed burns on arthropod
abundance, richness, and diversity. Standardised pitfall traps and active searches were used to compare
variation in abundance, richness and diversity of arthropods at various experimental burn plots in the
Kruger National Park, a protected area in a savanna setting.

Results
Hymenopterans: Formicidae were the most abundant (76.4%), whilst Coleopterans, Araneae and
Orthopterans constituted 18.6, 3 and 1% of the total arthropods collected respectively. Coleopterans were
the most diverse group (30.2%) compared to Hymenopterans: Formicidae (24.6), Araneae (24.6) and
Orthopterans (4%). Abundance, species richness and diversity of multi-taxa signi�cantly differed between
the treatment plots. Abundance and diversity of Formicidae were signi�cantly lower, hence, species
richness was signi�cantly higher in annually burnt plots compared to the unburnt control plots. Although
the highest number of arthropods was recorded in unburnt plots, species richness and diversity were
lowest in these plots compared to those burnt annually and triennially.

Conclusions
We conclude that late summer burns do not have major ecological impact on arthropods, and it was
demonstrated by the abundance and diversity of species recorded at the annually burnt plots. Thus,
annual late summer burns can be used as a conservation tool for arthropod inhabiting the protected
savanna of Kruger National Park.

1. Introduction
The savanna biome is a landscape dominated by grasses and scattered trees (Scholes & Archer, 1997).
Globally, savannas sustain diverse plants, vertebrates, invertebrates and pathogenic species (Botha et al.,
2016; Leeuwis et al., 2018; Vaz et al., 2012). In South Africa, this biome has been identi�ed as the largest
landscape, covering more than one-third of the total land surface area (Low & Rebelo, 1998). The
landscape is amongst known species-rich ecosystem which is highly sensitive to disturbances and
changes in the composition of one or more communities in the food-web affects the abundance of other
inhabitants and functioning of this ecosystem (Layme et al., 2004; Low & Rebelo, 1996; Mbenoun et al.,
2017; Siemann et al., 1997; Soto-Shoender et al., 2018; Uehara-Prado et al., 2010). This may lead to the
dysfunctional and imbalanced ecosystem thus compromising the provision of essential ecological
services.
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Arthropods are the most dominant group of organisms in savannas and are sensitive to ecological
changes (Blaum et al., 2009; Botha et al., 2016; LeClare et al., 2020). They account for more than 80% of
the identi�ed species from the Animalia Kingdom (Friend & Richardson, 1986; Stork, 2018). Their
contribution towards ecosystem services include organic matter decomposition, nutrient cycling,
pollination, seed dispersal, maintenance of biome density and food resource for other organisms within
savanna landscapes (Botha et al., 2016; Del-Claro et al., 2019; Kunz & Krell, 2011; LeClare et al., 2020).
However, arthropod abundance, richness and composition are affected by anthropogenic disturbances
and climate change (Gebeyehu & Samways, 2003; Jerrentrup et al., 2014; Mauda et al., 2018; Parr et al.,
2012). Changes in the composition of species within savanna ecosystems does not only interrupt the
ecological processes and functions, but also disrupts trophic interactions (Maia et al., 2019; Mauda et al.,
2018; Scheiter et al., 2019).

The common disturbances within savanna ecosystems include mammal herbivory/ grazing, fuelwood
extraction and veld �res (Andersen & Mṻller, 2000; Butler et al., 2021; Mograbi et al., 2019; Siemann et al.,
1997). Although these three activities exert pressure on the composition of plants and arthropods, �re has
been widely used to maintain the balance between the coexisting plant communities by impeding the
dense encroachment of shady tree species but also promote coppicing of ground covering grass species
and forbs. Thus �re, plays a pivotal role in savanna community assembly and subsequent ecosystem
function (Butler et al., 2021; Coetsee et al., 2010; Higgins et al., 2000; Smith et al., 2013; Trollope, 1980;
Trollope et al., 1998). The in�uence of �res on the diversity of organisms, particularly arthropods and
ecosystem processes in savanna biomes has received minimal attention. Yet, this knowledge is crucial in
the conservation of biodiversity and management of protected conservancy reserves.

In South Africa, one of the largest protected areas, Kruger National Park (hereafter referred to as KNP),
pioneered the long-term �re trials in 1954, following the amendment of the �re suppression policy in 1948
(Biggs et al., 2003; Van Wilgen et al., 2004). The Experimental Burnt Plots (EBPs) were initiated with the
intention of documenting the impact of �re on fauna and �ora of a savanna ecosystem. However, the
response of arthropods to different �re frequencies and intensities has received less attention (D'Souza et
al., 2021; Horak et al., 2006; Parr et al., 2004; Wittkuhn et al., 2011).

Several studies have reported that less mobile ground-dwelling and �ightless developmental stages of
arthropods are prone to �res, while active and soil-nesting arthropods may endure �res (Butler et al., 2021;
Certini et al., 2021; Higgins et al., 2014; Thom et al., 2015; Warren et al., 1987). Furthermore, the
elimination of plants by direct �re affects the arthropods inhabiting and feeding on the eliminated plants
and these impacts cascade through the food-chain (Haddad et al., 2009). Therefore, this study aimed at
quantifying the long-term impacts of prescribed �res on the abundance, species richness and diversity of
arthropods within the EBPs of the KNP. We hypothesized that long-term prescribed burns (annual and
triennial) affected the abundance, species richness and diversity of arthropods in KNP.

2. Material And Methods
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2.1. Study area
Kruger National Park is the largest protected area (i.e., ~ 2 million ha) in South Africa and is located along
the north-eastern boarder of the country. The park extends from Mpumalanga to Limpopo provinces, with
its northern demarcation bordering Mozambique and Zimbabwe. The park is located in a subtropical
region with the annual rainfall ranging between 350 and 750 mm per annum along the geographic
regions dominated by granite and basalt soils. Furthermore, the monthly minimum and maximum
temperatures of 15.7°C and 28.0°C was recorded during the cooler winter (June–August) and warmer
summer (December–March) season, respectively (Zambatis, 2006). Furthermore, the dominating trees
include Acacia, Combretum, Sclerocarya and Colophospermum (Biggs et al., 2003; Smith et al., 2013).
Amongst the selected long-term experimental burnt plots is the Tsende (23° 27.319’S; 31° 23.197’E; 370 m
a.s.l) and Skukuza (25° 5.870’S; 31° 27.891’E; 430 m a.s.l), which are located in the northern and southern
parts of KNP, respectively (Fig. 1).

2.2 Experimental plots
The long-term Experimental burn plot (EBP) strings constituted twelve plots prior to the division of late
summer biennial and triennial plots that were done with the intention of introducing the spring
quadrennial and sexennial treatments in the late 1970s. The division resulted in the number of subplots
increasing to fourteen at Tsende (Biggs et al., 2003). However, the two new treatments were not used in
this experiment, rather the long-term plots established in 1954 namely, unburnt, annually- and triennially
burnt during the late summer season (i.e., February- March) were used for arthropod sampling.

2.2. Arthropod sampling
A combination of passive and active arthropods capturing techniques were used to optimize the
sampling effort of arthropods from different taxa following previous studies (Eckert, 2017; Garcia et al.,
1982; Yekwayo et al., 2018). In brief, arthropods were �rst collected using pitfall traps and later active
searches within the transects during the cool season (between June and July 2019). At each of the 100 m
transects, ten pitfall traps were temporarily laid at a 2 × 5 grid transect with a trap-set (two individual
pitfall traps) placed 2 m apart (Munyai & Foord, 2015). The �rst pair of pitfall traps were placed at least
20 m from the �re break to avoid the boundary effect. The distance between pitfall traps was maintained
at 20 m and the experiment was replicated three times for each of the unburnt, annually- and triennially
burnt plots (Ward et al., 2001). During sampling, a 500 ml plastic honey jar (8 cm diameter and 10 cm
height) was buried with its rim �ushing the soil surface. The jar was half-�lled with ethylene glycol and
the traps were left open during arthropod sampling for �ve consecutive days (Borgelt & New, 2006). Traps
were removed after sampling to avoid destruction by the small and large mammals of KNP. The holes
were closed with the soil to allow initial soil, biodiversity and biome recovery. Intensive active searches
were conducted within the 100 x 2 m transect for 45 minutes. The less mobile arthropods inhabiting the
dung, dwelling under rocks and those inhabiting speci�c host-plants where actively captured (Yekwayo et
al., 2018). Data collected through both methods were pooled for each transect.
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Muddy and other contaminated samples were washed prior to arthropods preservation. Collected
arthropods were transferred from ethylene glycol to 70% ethanol and preserved at the University of
Mpumalanga laboratory, Mbombela, South Africa for subsequent identi�cation. In the laboratory,
representative specimens were sorted and identi�ed to the lowest taxonomic level (either morphospecies,
genus or species) using guides by Picker (2012). The voucher specimens were housed and catalogued at
the University of Mpumalanga, Biocontrol and Applied Entomology laboratory.

2.3. Data analyses
Data analyses were performed using Paleontological statistics software (PAST) version 4.09 (Hammer et
al., 2001) and Statistica version 13.3 (TIBCO Statistica™). Non-parametric estimators were used to predict
the asymptotic arthropod species richness for each of the annually, triennially burnt and unburnt plots
separately, and for all plots combined. The robust, accurate and reliable coverage-based estimator of
species richness namely incidence-based Coverage Estimator (ICE) was used to measure adequacy of
sampling effort. Furthermore, Chao1, Chao2, Jacknife2 and Michaelis–Menten means estimators were
used to provide the least-biased estimates of the sampled arthropods (Gotelli & Colwell, 2011).
Estimators were calculated for each of the annual, triennial and unburnt plots separately and for all plots
combined using EstimateS version 9.1.0 (Colwell 2006; Colwell 2013). The samples were randomized 100
times.

Due to the failure of the abundance and richness data to meet the assumptions of normality after
multiple transformations, differences in abundance and species richness between plots were compared
using the Kruskal-Wallis one-way Analysis of Variance (ANOVA) while One- way ANOVA was performed
for Shannon diversity indices across plots. Comparisons were performed for multi-taxon and each of the
four most abundant groups of arthropods.

Lastly, emulating species composition was calculated using the most abundant indicator species to test
for similarity in species composition between unburnt, triennially and annually burnt plots (Hart et al.,
2014). To visualize the separation of arthropod communities between unburnt, annually and triennially
burnt plots, a non-metric multidimensional scaling (nMDS) was performed at a stress value of 0.07 and
the Bray-Curtis distance was applied using Primer software.

3. Results

3.1. Species abundance and richness
A total of 6765 individual arthropods representing 126 morphospecies were collected from unburnt,
annually, and triennially burnt plots at the protected area of KNP (Table 1). From the sampled arthropod
species, Hymenoptera: Formicidae were the most dominating group, contributing 5168 (i.e., 76.4%)
followed by Coleopterans 1255 (i.e., 18.6%), while 342 (e.g., 5.1%) individual arthropods were recorded
from the remaining groups namely Orthopterans, Araneae, Blattodea, Dipterans, Hemipterans,
Lepidopterans, Scorpiones, Spirostreptida, and Scolopendromorpha (Fig. 2). The highest number of
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arthropods was captured at the unburnt plots with a total 2532 (e.g., 37.4%). Furthermore, the abundance
of multi-taxon declined by 0.9 and 0.7 folds at triennially and annually burnt compared to the unburnt
plot, thus, a total of 2391 (e.g., 35.4%) and 1842 (e.g., 27.2%) arthropods were captured from each plot
respectively (Table 1).

Table 1
Abundance, species richness and estimators of arthropods sampled from annually, triennially

burnt and unburnt plots in the long-term experimental burnt plots of Kruger National Park.
Arthropod species Frequency of burns

Annual Triennial Unburnt Combined

Number of arthropods sampled 1842 2391 2532 6765

Percentage of arthropods sampled 27,2 35,3 37,4 100

Number of species sampled 87 65 69 126

Percentage of species sampled 69,1% 51,6% 54,8% 100%

ICE 117,8 73,7 93,4 169

Chao2 110,8 ± 11,4 69,6 ± 3,7 93,6 ± 13,1 161,3 ± 14.7

Jackknife2 129,3 76,04 107,3 184,7

Bootstramp 100.7 71.7 78 144.2

MM means 104.6 78.2 83.5 132.2

Estimators: ICE- incidence-based Coverage Estimator; MM means- Michaelis–Menten means

The abundance of arthropods collected at the annually burnt plot was signi�cantly lower (H = 7.528, df = 
2, p = 0.023) compared to those at the unburnt plots. Nevertheless, there was no signi�cant difference in
abundance between triennially burnt and unburnt plots (Fig. 3; Table 2). Separate analyses on the
response of key arthropod groups to long-term prescribed burning showed that the abundance of
Hymenoptera: Formicidae (H = 7.906, df = 2, p = 0.019) signi�cantly differed across plots (Fig. 4; Table 2),
while, the abundance of Coleopterans (H = 0.9473, df = 2, p = 0.623), Orthopterans (H = 3.027, df = 2, p = 
0.220), and Araneae (H = 1.707, df = 2, p = 0.427) was not statistically different between the annually,
triennially burnt and unburnt EBPs.
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Table 2
Multiple comparisons of the abundance of multi-taxon and Hymenoptera: Formicidae between annually,

triennially burnt and unburnt Experimental Burnt Plots at KNP.
Group of arthropod(s) Experimental burnt plots   Statistics*  

A B N Z- value P- value

Multi-taxon Annual Triennial 18 2.1630 0.0916

  Unburnt 18 2.5415 0.0331

Triennial Unburnt 18 0.3785 1.000

Hymenoptera: Formicidae Annual Triennial 18 1.5141 0.39

  Unburnt 18 2.6226 0.026

Triennial Unburnt 18 1.1085 0.803

*Superscript: bolded statistical results shows signi�cant difference between paired treatments at P = 
0.05

Despite the noticeably high abundance of arthropods sampled at the long-term EBPs of KNP, the species
richness did not reach asymptotic estimations at the annually, triennially burnt and unburnt plots either
solely or combined. Of 126 morphospecies collected, the highest number of species was recorded at the
annually burnt plots. A total of 87 (e.g., 69.1%) morphospecies were captured at the annually burnt plots,
hence, 65 (51.6%) and 69 (54.8%) morphospecies were recorded at the triennially burnt and unburnt plots,
respectively (Table 1). From these plots, the overall number of morphospecies sampled was highest for
Coleopterans (30.2%), Hymenoptera: Formicidae (24.6%), Araneae (24.6%), Blattodea (5.6%), and up to
4% was recorded for Dipterans, Hemipterans, Lepidopterans, Orthopterans, Scorpiones, Spirostreptida,
and Scolopendromorpha (Fig. 5).

Species richness for multi-taxon was signi�cantly higher (H = 7.806, df = 2, p = 0.020) at the annually
burnt plot compared to triennially burnt and unburnt plots (Fig. 6; Table 3). It increased by 0.1 and 0.2
folds in triennially and annually burnt plots respectively. Similarly, the species richness of ants (H = 7.042;
df = 2; p = 0.030) was signi�cantly different between the annually, triennially burnt and unburnt plots
(Fig. 7; Table 3), hence, the species richness of other arthropods such as, Coleopterans (H = 2.348, df = 2,
p = 0.309), Orthopterans (H = 2.083, df = 2, p = 0.353), and Araneae (H = 1.132, df = 2, p = 0.568) did not
signi�cantly vary between the three EBPs (i.e., annually, triennially burnt and unburnt plots). Multiple
comparisons showed that species richness of multi-taxon and Hymenoptera: Formicidae signi�cantly
differed between the annually burnt and unburnt plots, hence, no variation was recorded between triennial
burnt plot and either of the annually burnt or unburnt plots (Table 3)
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Table 3
Multiple comparisons on the species richness of multi-taxon and Hymenoptera: Formicidae between

annually, triennially burnt and unburnt Experimental Burnt Plots at KNP.
Group of arthropod(s) Experimental burnt plots   Statistics*  

A B N Z- value P- value

Multi-taxon Annual Triennial 18 2.2170 0.0799

  Unburnt 18 2.5685 0.0306

Triennial Unburnt 18 0.3515 1.000

Hymenoptera: Formicidae Annual Triennial 18 1.5141 0.39

  Unburnt 18 2.6226 0.026

Triennial Unburnt 18 1.1085 0.803

*Superscript: bolded statistical results shows signi�cant differences between paired treatments at P = 
0.05

3.2. Diversity metrices
Shannon diversity index showed that there was signi�cant variation (P < 0.05) in the diversity of multi-
taxon (i.e., all arthropods combined), and for the most abundant group of arthropods (i.e., Hymenoptera:
Formicidae) (Fig. 8; Table 4). However, there was no signi�cant variation (P > 0.05) in the diversity of
Coleopterans and Araneae between the annually, triennially burnt, and unburnt EBPs. Nevertheless, the
diversity metrices for Orthopterans was not computed due to lack of su�cient data (Table 4). Of the 126
morphospecies of arthropods collected in the current study, 30.2% of the species were shared between
the three plots. Less than 4.8% of the overall species were shared between burnt (i.e., either annual or
triennial) and unburnt plots. The highest number of species (e.g., 7.1%) was shared between annually and
triennially burnt plots. Lastly, 16.7%, 11.1% and 27% of the species were distinct to the unburnt, triennially
and annually burnt plots, respectively (Supplementary Table 1).
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Table 4
Diversity (Shannon_D1) of arthropods sampled at the annually, triennially burnt and unburnt plots at the

long-term Experimental Burnt Plots of Kruger National Park.
Group(s) of arthropods Statistics

SS DF mean squares F P- value

Hymenoptera: Formicidae 0.35092 2 0.17546 3.887 0.043646

Coleopterans 0.49573 2 0.24786 1.3366 0.292304

Orthopterans - - - - -

Araneae 0.12658 2 0.06329 0.2167 0.807644

Multi-taxon 0.6769 2 0.3384 6.752 0.008109

*Superscript: denotes that statistical analysis was not conducted for a speci�c group of arthropods
due to the missing variables.

3.3. Relationship between plots and arthropods
Cluster analysis identi�ed 4 groups: group 1 - annual 3, group 2 – triennial 1–3, unburnt 1–3 and annual
1–2, group 3 – unburnt 4–6 and triennial 4–6 and group 4 – annual 4–6. (Fig. 8). Within groups 2 and 3,
subgroups of similar taxa groupings were observed, for example in group 3, the unburnt 4–6 and triennial
4–6 formed different subgroups. However, a subgroup in group 2, had annual 1–2 and triennial 1
grouped together suggesting similarities (Fig. 9). Similarly, the two-dimensional representation of the n-
MDS showed that the arthropod community in unburnt plots were separated from those of the annual
and triennial burnt plots while there was an overlap between the triennial and annual plots (Fig. 10). The
Formicidae 26 and Carabidae 8 from the Hymenoptera: Formicidae and Coleopteran groups of
arthropods characterised the unburnt plots whereas, the Formicidae 30 and Gyrinidae 6 from the same
groups were common in the triennial plots and Carabidae 10 (i.e., Coleopterans) was common in the
annual plot (Fig. 10).

4. Discussion
In the current study, the data collected from the unburnt, triennially and annually burnt plots did not reach
asymptote for individual treatments separately and combined. This postulates that sampling efforts were
insu�cient at each treatment plot separately and combined, however, the data was analysed to measure
the variation in abundance, species richness and diversity of arthropods at the long-term experimental
burnt plots of KNP. Similar studies conducted in grasslands, woody forests and savannas landscapes
demonstrated clearer impact on the abundance, species richness and diversity of arthropods although
the analysed data did not reach asymptote (Kunz & Krell, 2011; Magoba & Samways, 2012; Otieno et al.,
2021). The studies demonstrated how prescribed �re can be an ecologically sound approach that
balances the abundance, species richness, composition and diversity of arthropods in the forests,
grasslands and oak savanna landscapes in the United State of America (Ferrenberg et al., 2006; Harper et
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al., 2000; Siemann et al., 1997). Likewise, the current study reports the signi�cant impact of prescribed
burns (i.e., annually and triennial) on the abundance, species richness, and diversity of sampled
arthropods at the long-term experimental burnt plots of KNP, although the data did not reach asymptote.

The abundance, species richness and diversity of multi-taxa signi�cantly differed between the annually
burnt and unburnt plots while the triennially burnt did not differ with the unburnt treatment at the long-
term EBPs of KNP. This variation may have been elicited by the prescribed burn that occurred a month
before sampling in the annually burnt plots resulting in minimal recovery time. The current study showed
that burning improves the richness and diversity of species whilst decreasing arthropod abundance at the
burnt plots of KNP. The �ndings corroborate with previous studies that reported differences in abundance,
species richness and diversity of arthropods after incidental/ prescribed �res in Europe, United states of
America and Africa (Ferrenberg et al., 2006; Siemann et al., 1997; Valkó et al., 2016; Yekwayo et al., 2018).
Of the plots sampled at KNP, the abundance, species richness and diversity was signi�cantly different
between the annually burnt (i.e., which was burnt approximately a month before the initial sampling) and
the unburnt plot. Furthermore, no statistical variations was notable between the triennially burnt (i.e.,
burnt at least two years before arthropod sampling) and either the annually burnt or unburnt plots.
Several studies showed that the abundance, richness and diversity of arthropods sampled at least 6
months (i.e., up to 10 years) after incidental or prescribed �res does not statistically differ with that on the
unburnt plot at protected areas (Ferrenberg et al., 2006; Graham et al., 2009; Pryke & Samways, 2012;
Valkó et al., 2016; Yekwayo et al., 2018). Since arthropods were sampled a month after burning at the
annually burnt plots, we therefore speculate that the notable variation in abundance, species richness and
diversity of multi-taxa arthropods might have been in�uenced by the time between the �re incidence and
initial sampling (< 6 months). Given this variation, the results indicate that responses of arthropods are
time-since-�re related.

Amongst the most abundant taxa sampled from the experimental burnt plots of KNP were Hymenoptera:
Formicidae, Coleopterans and Araneae. This is in agreement with previous studies which reported the
three groups of arthropods (i.e., Hymenoptera: Formicidae, Coleopterans and Araneae) as the most
abundant arthropods sampled at sites where multi-taxon were used as ecological indicators to measure
the impact of prescribed or incidental �res (Ferrenberg et al., 2006; Kaynas, 2016; Pryke & Samways,
2012; Valkó et al., 2016; Yekwayo et al., 2018). The abundance of Hymenoptera: Formicidae was not
surprising since they are known to be ubiquitous group of insects contributing to a variety of ecological
functions in grasslands and savannas (da Silva et al., 2020; Graham et al., 2009; Underwood & Fisher,
2006; Van Schalkwyk et al., 2019). Of the individual groups of arthropods sampled, only the most
dominant taxon (i.e., Hymenoptera: Formicidae) was signi�cantly affected by the frequency of burns at
the protected savanna of KNP. This notable difference in the abundance, species richness and diversity
re�ect the sensitivity of Hymenoptera: Formicidae to prescribed �res. The sensitivity of Hymenoptera:
Formicidae to ecological disturbances (i.e. �re) at the EBPs illustrates their renown use as a reliable
ecological indicator.
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The response (e.g., abundance, species richness and diversity) of the most abundant taxon (i.e.,
Hymenoptera: Formicidae) emulated that of the multi-taxa at different burning regimes at KNP. Likewise,
Siemann et al. (1997) reported that the abundance, species richness and diversity of dominating group of
arthropods was similar to that of multi-taxa combined at different burnt plots at the oak savanna of
Cedar Creek Natural History Area, Minnesota. Moreover, Yekwayo et al. (2018) demonstrated that the
abundance, species richness and diversity of the most abundant group of arthropod (i.e., Hymenoptera:
Formicidae) was similar to that of the multi-taxon in a study which measured the impact of �re on
arthropods at the Cape Winelands and Kogelberg Biosphere Reserves, Western Cape, South Africa.

The increase in the number of arthropods with the time post-�re and frequency of prescribed burns
demonstrates the direct and indirect effect of �re on the ground dwelling arthropods at the KNP. The
results showed that shortly after burn, the number of individual arthropods was signi�cantly lower
compared to numbers at plots burnt a year before sampling and the unburnt. However, species richness
and biodiversity indices contrasted the arthropod abundance data, with statistically high richness and
biodiversity at the annually burnt compared to triennially burnt and unburnt plots. These results
corroborate with previous studies that reported bene�ts of �res on the composition of arthropods,
although the numbers were drastically affected in the short term (Ferrenberg et al., 2006; Lazarina et al.,
2017).

Ground-dwelling invertebrates and immature inhabiting combustible live (e.g., plants) or dead material
(e.g., litter) are highly prone to �res and may be burnt during veld �res (Kwok & Eldridge, 2015; Kwok et al.,
2016; Vasconcelos et al., 2009). As such, the destruction of various habitats such as plant, litter, dung
during burning is speculated to have signi�cantly reduced the numbers of arthropod at the annually burnt
plots in the current study. While Yekwayo et al. (2018) reported lower species richness and diversity of
arthropods, the current study reported otherwise in annually burnt plots. However, a study by Pryke and
Samways (2012) reported that the diversity of multi-taxon is signi�cantly higher at a recently burnt plot
(i.e., 3-month post �re) compared to those sampled a year to three years after �res.

Underground nests and animal dung encouraged survival of ants and coprophagous beetles (i.e.,
Coleopterans) which appeared to be less than 2-folds lower in the annually burnt plot compared to
triennially burnt and unburnt plots at KNP. Neither abundance, species richness and diversity of
Coleopterans (i.e., dominated by coprophagous beetles) were affected by frequency of burns at KNP.
Some studies demonstrated the resilience of coprophagous Coleopterans against incidental and veld
�res and this has been associated with the dung and underground nesting behaviour of this speci�c
group of arthropods (Nunes et al., 2019; Palusci et al., 2021). Although statistical variation was notable
for Hymenoptera: Formicidae, the underground nests were speculated to have protected the scavenging
ants from the direct �re. The insigni�cant impact on the assemblage of Orthopterans and Araneae is a
result of overwintering strategy of some developmental stages below the soil surface and dispersal
abilities of these groups (Jing & Kang, 2003; Lipovšek & Novak, 2016; Narimanov et al., 2021).
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The current study shed some light on the long-term bene�ts of late summer prescribed burns on the
conservation of arthropod species and biodiversity in the savanna landscape of KNP. Results on the long-
term impact of late summer prescribed burns �lled a gap outlined by Parr et al. (2004) which emphasized
the need to assess the overall response of arthropods (i.e., multi-taxon) at the protected areas where late
summer �res have been constantly used as a veld management tool. The current study reported that the
impact of the late summer �re is temporal and the abundance of arthropods signi�cantly improves with
the time-since-�res. The rate recovery by arthropods emulates that incurred post-burn or incidental �res.
Improved species richness and diversity at burnt plots elucidate the bene�t of �re at the protected areas
of Kruger National Park. In conclusion, burning during late summer season should be encouraged
although it has temporal impact on the abundance of arthropods inhabiting savanna landscape of KNP.
The intensity of ongoing prescribed burns at the protected reserve of KNP encouraged the conservation of
arthropod species for over 67 years, thus, the disruption of functions and ecological services rendered by
arthropods is temporal.
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Figures

Figure 1

South African map displaying the geographic location of Kruger National Park and two selected
experimental burnt plots namely Tsende (shaded circle) and Skukuza (dotted circle).
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Figure 2

Abundance of arthropods sampled at the annually, triennially burnt and unburnt plots, solely and
combined.
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Figure 3

Boxplot showing the abundance of multi-taxon arthropods collected at the annually, triennially burnt and
unburnt plots of Kruger National Park.
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Figure 4

Boxplot showing the abundance Hymenoptera: Formicidae arthropods collected at the annually,
triennially burnt and unburnt plots of Kruger National Park.



Page 22/27

Figure 5

Number of arthropod species sampled at the annually, triennially burnt and Unburnt plots solely and
combined.
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Figure 6

Boxplot showing the species richness of multi-taxon sampled at the annually, triennially burnt and
unburnt plots of Kruger National Park.
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Figure 7

Boxplot showing the species richness of Hymenoptera: Formicidae sampled at the annually, triennially
burnt and unburnt plots of Kruger National Park.
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Figure 8

Boxplot showing the diversity (Shannon-Wiener diversity index) of arthropods [i.e., multi-taxon (a), and
Hymenoptera: Formicidae (b)] sampled at the annually, triennially burnt and unburnt plots of Kruger
National Park
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Figure 9

Classi�cation tree showing arthropod assemblage similarities across annually, triennially burnt and
unburnt plots at Kruger National Park. The group-average linking on Bray-Curtis species similarities was
used to measure the similarities.
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Figure 10

nMDS ordination showing the resemblance of arthropod species across annual, triennially burnt and
unburnt plots surveyed at KNP. Polygons represents different plots, namely: annually burnt (light blue);
triennially burnt (dark blue), and unburnt (green).


