Please use this identifier to cite or link to this item:
https://cris.library.msu.ac.zw//handle/11408/4394
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dube, Yolisa Prudence | - |
dc.contributor.author | Ruktanonchai, Corrine Warren | - |
dc.contributor.author | Sacoor, Charfudin | - |
dc.contributor.author | Tatem, Andrew J | - |
dc.contributor.author | Munguambe, Khatia | - |
dc.contributor.author | Boene, Helena | - |
dc.contributor.author | Vilanculo, Faustino Carlos | - |
dc.contributor.author | Sevene, Esperanca | - |
dc.contributor.author | Matthews, Zoe | - |
dc.contributor.author | von Dadelszen, Peter | - |
dc.contributor.author | Makanga, Prestige Tatenda | - |
dc.date.accessioned | 2021-06-07T13:37:48Z | - |
dc.date.available | 2021-06-07T13:37:48Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 2059-7908 | - |
dc.identifier.uri | https://gh.bmj.com/content/bmjgh/4/Suppl_5/e000894.full.pdf | - |
dc.identifier.uri | http://hdl.handle.net/11408/4394 | - |
dc.description.abstract | Background Existence of inequalities in quality and access to healthcare services at subnational levels has been identified despite a decline in maternal and perinatal mortality rates at national levels, leading to the need to investigate such conditions using geographical analysis. The need to assess the accuracy of global demographic distribution datasets at all subnational levels arises from the current emphasis on subnational monitoring of maternal and perinatal health progress, by the new targets stated in the Sustainable Development Goals. Methods The analysis involved comparison of four models generated using Worldpop methods, incorporating regionspecific input data, as measured through the Community Level Intervention for Pre-eclampsia (CLIP) project. Normalised root mean square error was used to determine and compare the models’ prediction errors at different administrative unit levels. Results The models’ prediction errors are lower at higher administrative unit levels. All datasets showed the same pattern for both the live birth and pregnancy estimates. The effect of improving spatial resolution and accuracy of input data was more prominent at higher administrative unit levels. Conclusion The validation successfully highlighted the impact of spatial resolution and accuracy of maternal and perinatal health data in modelling estimates of pregnancies and live births. There is a need for more data collection techniques that conduct comprehensive censuses like the CLIP project. It is also imperative for such projects to take advantage of the power of mapping tools at their disposal to fill the gaps in the availability of datasets for populated areas. | en_US |
dc.language.iso | en | en_US |
dc.publisher | BMJ Publishing Group | en_US |
dc.relation.ispartofseries | BMJ Global Health;Vol.4 | - |
dc.subject | modelled birth and pregnancy estimates | en_US |
dc.subject | high resolution maternal health census data | en_US |
dc.subject | southern Mozambique | en_US |
dc.title | How accurate are modelled birth and pregnancy estimates? Comparison of four models using high resolution maternal health census data in southern Mozambique | en_US |
dc.type | Article | en_US |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Research Papers |
Page view(s)
50
checked on Nov 22, 2024
Download(s)
30
checked on Nov 22, 2024
Google ScholarTM
Check
Items in MSUIR are protected by copyright, with all rights reserved, unless otherwise indicated.