Please use this identifier to cite or link to this item: https://cris.library.msu.ac.zw//handle/11408/4370
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMukwembi, P.-
dc.contributor.authorShateyi, S.-
dc.date.accessioned2021-06-04T10:47:35Z-
dc.date.available2021-06-04T10:47:35Z-
dc.date.issued2019-
dc.identifier.issn0973-5763-
dc.identifier.urihttp://www.pphmj.com/abstract/12745.htm-
dc.identifier.urihttp://hdl.handle.net/11408/4370-
dc.description.abstractThe stability of the spectral relaxation method (SRM) is demonstrated for boundary value problems. The analysis is based on basic concepts in the analysis of numerical methods and iterative methods. The derivation of the (SRM) scheme is discussed. Numerical examples are given for the case of the incompressible steady state problems. These sample calculations show that the schemes realize theoretical predictions of how their truncation errors depend on grid size. The Matlab codes are straightforward and allow the reader to see the differences in implementation between convergence, consistence and stability of the numerical scheme.en_US
dc.language.isoenen_US
dc.publisherPushpa Publishing Houseen_US
dc.relation.ispartofseriesJP Journal of Heat and Mass Transfer;Vol.17 ; Issue 2 :p.477 - 496-
dc.subjectstability analysisen_US
dc.subjectspectral relaxation methoden_US
dc.subjectnonlinear boundary value problemen_US
dc.subjectnumerical methodsen_US
dc.titleThe stability analysis of spectral relaxation methoden_US
dc.typeArticleen_US
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
Appears in Collections:Research Papers
Files in This Item:
File Description SizeFormat 
mukwembi.pdfAbstract21.58 kBAdobe PDFView/Open
Show simple item record

Page view(s)

52
checked on Nov 22, 2024

Download(s)

14
checked on Nov 22, 2024

Google ScholarTM

Check


Items in MSUIR are protected by copyright, with all rights reserved, unless otherwise indicated.