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A B S T R A C T

The study modelled soil erosion risk in the Shashe and Tugwi–Zibagwe rural sub-catchments in Zimbabwe. To 
derive land use and land cover (LULC) thematic maps for the years 2016, 2020 and 2023, analysis ready data 
(Sentinel 2) were applied using the Random Forest (RF) algorithm in the Google Earth Engine (GEE) platform. 
The Revised Universal Soil Loss Equation (RUSLE) model was applied to understand the drivers of soil loss in the 
sub-catchments. The rainfall erosivity (R), soil erodibility (K), length slope (LS), crop management (C) and 
conservation support practice factors (P) were derived in GEE and applied as input to determine soil erosion risk. 
The findings of the study show that, the Shashe sub-catchment had mean soil losses of 15.75, 45.25, and 23.51 t 
ha− 1 year− 1 for 2016, 2020, and 2023, respectively. In the Tugwi-Zibagwe sub-catchment, the mean soil losses 
were 11.62, 18.45, and 37.34 t ha− 1 year− 1 for the same years. The results also show that LULC changes were one 
of the major drivers to soil loss in the rural dominated sub-catchments. Results further show that, the area under 
cultivation was exposed to severe erosion which averaged 16–48 t ha− 1 year− 1 when compared to other land 
covers in the study areas. In conclusion, of all the two sub-catchments the Shashe experiences severe soil loss 
than Tugwi-Zibagwe due to variations in land use and covers. Soil loss also tends to be considerably high in areas 
along drainage networks and where vegetation clearance is evident. These findings highlight the pressing need 
for up-to-date soil management approaches to improve soil conservation in rural dominated sub-catchments of 
Zimbabwe.

1. Introduction

Soil erosion cannot be regarded as a new issue since of late it has 
been regarded as a serious environmental hazard (Poesen, 2018; Phinzi 
et al., 2021; Musasa et al., 2024). Land degradation is singled out as a 
significant environmental concern worldwide, predominantly in areas 
that depend on agricultural activities (Abdulkareem et al., 2019; Sen
anayake et al., 2024), with 85 % of this degradation attributed to soil 
erosion, a pervasive issue across the globe (Senanayake et al., 2024). 
LULC change which is the main driving factor, affects soil quality and 
sub-catchments hydrology (Paul et al., 2019; Cui et al., 2022; Sen
anayake et al., 2024). Therefore, it is imperative to evaluate LULC al
terations and its related impact on soil loss.

Worldwide, soil erosion occurrence is a common phenomenon in 
communal agricultural areas and is estimated to be between 25 and 90 t 
ha− 1 year− 1 causing a decrease of 15–30 % in terms of productivity 

(Getu et al., 2022). Of late, the growing demand for crop cultivation in 
developing countries has led to extensive land clearance, causing sig
nificant degradation (Li et al., 2023; Senanayake et al., 2024). Despite 
this concern, detailed information on the influence of LULC changes on 
the rate of erosion and fertility depletion at local scales, such as district 
and sub-catchment levels, remains scarce. This lack of data raises con
cerns about the effectiveness of strategies aimed at promoting sustain
able environmental management. Literature reveals that accurate 
detection of LULC change is often challenging due to massive land use 
fragmentation (Paul et al., 2019; Senanayake et al., 2024). This chal
lenge has prompted broader exploration, with remote sensing (RS) 
emerging as a promising solution.

Despite being highly accurate, traditional field-based methods 
applied for LULC change detection and soil erosion monitoring and 
assessment in sub-catchments, have proven to be expensive (Phinzi 
et al., 2021), labour-intensive, time-consuming and difficult to carry out, 
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especially over large and inaccessible areas (Seutloali et al., 2017; Ale
bachew et al., 2025). With the advancements and progress in remote 
sensing, earth observation and geospatial methods have proven to offer 
more practical and cost-effective means to predict and quantify soil 
erosion risk, intensity and its occurrence both locally and globally. From 
a global point of view, several studies have been conducted to under
stand the spatial distribution and occurrence of soil erosion in varying 
environments (Paul et al., 2019; Obiahu and Elias, 2020).

In Southern Africa, few studies (Sepuru and Dube, 2018; Marondedze 
and Schütt, 2020; Dzawanda and Ncube, 2022) have utilized spatial 
techniques to assess soil erosion occurrence in sub-catchments. For 
instance, Seutloali et al. (2017), utilized topographic and rainfall vari
ables to assess key drivers and mapped the distribution of erosion in the 
former South African homelands of Transkei. However, the major 
challenge is that some of the studies conducted adopted high-resolution 
remotely sensed data from QuickBird and WorldView, to map eroded 
surfaces (Phinzi et al., 2021). Moreover, the application of OBC to 
Landsat (medium resolution) and other readily available data such as 
Sentinel 2 MSI has not yet been reconnoitred although it has prospects 
for effective solution as it can provide an inventory of global data 
coverage which has enhanced soil erosion assessment and monitoring 
(Paul et al., 2019). This implies that if the quality of assessments in 
environmental monitoring is to be improved focus should also be placed 
on need to understand the magnitude of erosion influenced by LULC 
change. Studies conducted in Zimbabwe, for example, Dzawanda and 
Ncube (2022), mainly focused on the vegetation changes and soil 
erosion hazard using single point data to assess the spatial and temporal 
occurrence of erosion which the present study seeks to improve by using 
multi-date remotely sensed data.

To date, several models have been advanced to envisage soil erosion. 
This has witnessed the emergence of robust practical models such as e.g 
the Revised Universal Soil Loss Equation (RUSLE) which has gained 
acceptance in soil loss risk estimation (Wischmeier and Smith, 1978; 
Bagherzadeh, 2014; Alebachew et al., 2025). To add on, models like the 
United States Department of Agriculture-Water Erosion Prediction 
Project (WEPP) (Nearing et al., 1989) and European Soil Erosion Model 
(EUROSEM) (https://www.frontiersin.org/journals/forests-and-glob 
al-change/articles/10.3389/ffgc.2023.1124677/full) have also aided 
soil risk estimation. Although, numerous models have been put in place 
for soil erosion studies, the RUSLE has been the most applied (Dube, 
2011; Abdulkareem et al., 2017; Paul et al., 2019; Li et al., 2023; Musasa 
et al., 2024). In its strict sense, a combined remote sensing and RUSLE 
have since proved to be effective since it is associated with less costs, 
time-saving and more accurate but its potential has not been fully 
explored (Abdulkareem et al., 2017; Yesuph and Dagnew, 2019; Phinzi 
et al., 2021).

The RUSLE potential to estimate soil loss was tested in the Canadian 
watersheds where LULC changes had significant impact on the amount 
of soil lost annually (Paul et al., 2019; Li et al., 2023). Abdulkareem 
et al., (2017) predicted soil erosion risks in the Lelantan river basin using 
the same approach and observed significant loss. Similarly, Phinzi et al. 
(2021) adopted the RUSLE in a RF combined approach and observed 
significant soil loss attributed to changes in land use and human activ
ities. Dube (2011) adopted a similar approach to estimate soil loss in 
Mbire district and produced accurate results. This clearly shows that the 
model has been widely adopted, as it is simple with limited data re
quirements (Gaubi et al., 2017; Paul et al., 2019; Li et al., 2023).

Although great strides have been made to assess and monitor soil 
erosion, very few studies in Zimbabwe for example Kusena et al. (2022), 
have tried to combine the RUSLE model with machine learning ap
proaches in a geospatial environment. All this implies that location 
specific soil erosion studies are still substantial in Zimbabwe to address 
the problem of soil erosion. Interestingly, the fusion of RUSLE and OBC 
methods using analysis ready data at district and sub-catchments scale is 
not well-documented (Dube, 2011; Paul et al., 2019). To add on, ma
chine learning algorithms, for example, RF which are robust have 

enhanced the quality of assessments but have not been fully explored 
(Paul et al., 2019; Gxokwe et al., 2022). The study was undertaken with 
little relatively known but highly susceptible and fragile rural domi
nated sub-catchment areas, where soil erosion is the major challenge 
and common phenomenon, yet such studies are rare in light of the global 
pressing environmental challenges.

The present study includes a more comprehensive approach that 
combines a diverse set of variables, for soil erosion risk monitoring. The 
study therefore offers new insights as it presents relevant information on 
modelling potential soil erosion risk, by integrating high-resolution 
remote sensing data with machine learning classification methods and 
GIS-based spatial erosion modelling. The study also applies a robust 
method that employs multi-temporal LULC data to understand dynamic 
changes and their cumulative impact on soil erosion in a holistic manner 
that fills up gaps in literature and methods applied previously. An 
assessment of soil erosion in arid environments contributes information 
essential towards the attainment of the United Nations Sustainable 
Development Goals (SDGs) 1 (end poverty), 2 (zero hunger), and 14 (life 
below water). In order to effectively counteract the problems of soil 
erosion and militate its frustrating impacts in sub-catchments, the 
assessment and monitoring of soil erosion risk is essential. Against this 
backdrop, only a few research attempts have been documented to make 
such efforts. The study will primarily focus on the two distinct rural 
dominated sub-catchments which are located in varying Agro-Ecological 
Zones. The areas also have different slope length and type a factor which 
has significant contribution to potential soil loss. The primary objectives 
of this study are. 

(1) To analyse land use and land cover (LULC) changes in Shashe and 
Tugwi-Zibagwe sub-catchments.

(2) To model potential soil erosion risk using RUSLE and remote 
sensing approaches.

(3) To assess the impact of LULC changes on soil erosion occurrence 
and intensity.

2. Materials and methods

2.1. Study area

The study areas were located in discrete Shashe and Tugwi –Zibagwe 
sub-catchments (Fig. 1). In terms of hydrology, the country been cate
gorized into seven catchments, namely Gwayi, Save, Sanyati, Mazowe, 
Manyame, Runde and Mzingwane. Zimbabwe basically has 5 Agro- 
Ecological Zones (AEZs) determined by the amount of rainfall received 
and soil suitability for agriculture (Manatsa et al., 2020). The study areas 
are located in different hydrological sub-catchments that is Shashe 
(Mzingwane) and Tugwi-Zibagwe (Sanyati and Runde).

It is prudent to stipulate that, Tugwi –Zibagwe sub-catchment lies 
under region 3, 4 and 5a with rainfall ranging between 400 and 800 mm. 
The sub-catchment is largely covered by the green stone belt which 
generally develops weak soils. Generally, the soils in the rural domi
nated sub-catchments are mostly subjected to erosion as a result of 
human activities largely linked with massive cutting down of trees for 
fire wood.

The Shashe sub-catchment is typically located in AEZ 4–5b. To add 
on, there are also other areas which are to the north of Kezi which can be 
recognised as under AEZ 4 with rainfall below 650 mm being received 
(Ashton et al., 2001; Manatsa et al., 2020). There is also an area called 
Kafusi, which is located South of Kezi and is in AEZ 5a. There are also 
areas to the far south where there is Thuli and Shashe which constitute 
AEZ 5b. Generally, the Shashe sub-catchment experiences dry condi
tions also having poor soils than the Tugwi –Zibagwe sub-catchment, a 
position which motivates the present study to adopt a comparative 
approach in understanding the variations in soil erosion risk.

In Shashe sub-catchment, especially to the north of Kezi, land use is 
mainly commercial characterized by livestock production with some 
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drought tolerant crops like sorghum and millet being grown (Fig. 1). The 
sub-catchment falls within the jurisdiction of Mangwe, Matobo and 
Gwanda Districts, with total population of and 65,562 (31,067 males 
and 34,495 females), 95,696 (47,124 males and 48,572 females) and 
124,548 (61,600 males and 62,948 females) respectively (Zimbabwe 
National Statistical Agency, 2022).

In Zibagwe sub-catchment, key economic activities include mining 
and agriculture. The sub-catchment is within the jurisdiction of Vhungu, 
Kwekwe, Chirumanzu and Chikomba rural district councils. Chir
umanzu, Vungu, Kwekwe and Chikomba districts which fall within this 
catchment have populations of 95,272 (45,589 males and 49,683 fe
males), 121,712 (60,433 males and 61,279 females), 197,063 (98,794 
males and 98,269 females) and 123,937 (59,030 males and 64,907 fe
males) respectively (Zimbabwe National Statistical Agency, 2022). 
Chirumanzu District also covers part of Tugwi sub-catchment, together 
with Chivi, Masvingo and Shurugwi districts with total populations of 
172,979 (79,556 males and 93,423 females), 238,103 (112,557 males 
and 125,546 females) and 98,315 (48,609 males and 49,706 females) 
respectively (Zimbabwe National Statistical Agency, 2022).

2.2. Field data collection

Field surveys to collect data were carried out between the January 1, 
2023 and March 31, 2023 and between August 1, 2023 and October 31, 
2023. In this study, a hand-held Global Position System (GPS) Garmin 
Etrex 30 recorded coordinates with an accuracy of 5–10 m (16–33 feet). 
The process of collecting data also encompassed capturing of data on 
major land covers, such as water bodies, cultivated + bare areas, eroded 

areas, grasslands and built-up areas. A total of four hundred points were 
picked during the process making use of GPS. Out of these samples each 
land cover class had 50 points which were evenly distributed and later 
validated using Google earth for image classification in GEE. Visual 
observations proved handful in selection of land cover classes with 
samples late being grouped.

2.3. Remote sensing data acquisition and pre-processing

In this study, the acquisition of analysis ready data was executed 
following the steps in Fig. 2a. Analysis ready data based on Sentinel 2 
MSI Level 1C were used to assess LULC and determine RUSLE parame
ters such as crop management (C) and conservation practice (P) which 
was essential in predicting soil loss risk in the rural landscapes. The 
Sentinel 2 MSI level 1C (COPERNICUS/S2_SR/ 
20161128T002653_20161128T102149_T56MNN) Surface reflectance 
images available in GEE were applied for the years 2016, 2020 and 2023 
for the LULC classification and RUSLE parameter derivation (C factor). 
The data were extracted from the GEE catalogue available at htt 
ps://earthengine.google.com/. These products are already atmospheri
cally corrected by using the Sen2cor toolbox, and they contain twelve 
UINT16 spectral bands that are scaled by 10000, as well as three QA 
bands, where one (QA60) is a bitmask band with cloud mask informa
tion. Filtering of the data collected was done by the region of interest 
(sub-catchment scale and the date), by applying ‘Image.filterBounds ()’ 
and ‘ee. Filter.Date ()’. The ‘ee. Filter.eq (‘CLOUD_COVER’, 5)’ code was 
the applied reduce images based on cloud cover. During the processing 
stage of the Sentinel 2 scenes, the acquired images were first reduced 

Fig. 1. Map of Shashe and Tugwi –Zibagwe sub-catchments in Zimbabwe, Source (Authors).
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and normalized for the illumination and clouds effects, using the median 
composite algorithm, which reduces a stack of images by the compu
tation of median values across the matching bands of a pixel in an image 
stack, and consequently reduces the cloud cover and illumination ef
fects. The median composite works by reducing a stack of images 
through the calculation of the median of all the values at each pixel 
across the stack of all matching bands, thus minimising the effects of 
shades and clouds (Mahdianpari et al., 2019). The median composite in 
this study was executed by using the code ”Median ()” on the GEE.

This study is quite unique in the sense that it integrates high- 
resolution remote sensing data with machine learning classification 
methods (Random Forest) and GIS-based spatial erosion modelling. This 
therefore, motivated the researchers to combine these robust methods 
which previous research has not fully explored to obtain rich informa
tion contained and harness the potential of machine learning in as far as 
estimation of soil erosion risk is concerned in rural sub-catchments of 
Zimbabwe. The study has also significance as it adopts use of multi- 
temporal LULC data (2016, 2020, and 2023) to understand dynamic 
changes and their cumulative impact on soil erosion (Table 1). Many 
similar studies rely on only one or two time points. Additionally, the 
study benefits from high-resolution spatial data, which allows for a fine- 

Fig. 2a. Flow chart outlining the methodology.

Table 1 
Number of Sentinel-2 products available after filtering by date, region of interest 
and cloud cover.

Remote 
sensing 
product

Year Images obtained 
per month (cloud 
cover <5 %)

Band - 
spatial 
resolution

Tiles

March October Shashe Tugwi- 
Zibagwe

Sentinel-2 
MSI 
level 1-C

2016 5 6 3 (Green) – 
10 m

T35KNS T35KQU

2017 6 6 ​ T35KNT T35KQV
2019 4 5 & T35KPR T35KRT
2020 6 6 ​ T35KPS T35KRU
2021 6 6 ​ T35KPT T35KRV
2022 5 6 11 (SWIR) – 

20 m
T35KQR T36KTC

2023 5 4 T35KQS T36KTD
T35KQT T36KUB
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scale assessment of erosion risk across the sub-catchments of Zimbabwe.

2.4. Adopted machine learning classification scheme

The Sentinel 2 MSI level 1C was adopted for LULC classification since 
the data became available after 2016. In this case, the Land cover map 
for the RUSLE were derived from bands of Sentinel 2 MSI level 1C (bands 
2 (blue), 3 (green, 10m), 4 (red, 10m), 8 (near infrared, 10m) and 11 
(SWIR, 20m) (Table 1). In this study, the classification of the images was 
done using the Random Forest (RF) algorithm on the GEE platform. The 
researchers opted for this high-resolution data to enable continuity of 
one product so as to improve the quality of assessment. The RF algo
rithm is an ensemble classifier consisting of many trees where each tree 
casts a unit vote to split the samples. This specific algorithm was chosen, 
firstly, because it is capable of handling large differentiations between 
the landcover classes, thus neutralising the data noise, and secondly, 
because of its superiority to other GEE algorithms in studies, for 
example, Gxokwe et al. (2022).

The RF classifier was adopted due to its proven success as outlined by 
Saravanan and Abijith (2022), Gxokwe et al. (2022) and Laonamsai 
et al. (2023). In these studies, RF was among the best-performing al
gorithms, with a high overall and class accuracies; therefore, it was 
selected for this study. Prior to the classification, the collected field data 
were randomly split into 70 % training and 30 % validation data. The 

principle behind the splitting of data to 70/30 was to ensure that they 
represented a large training dataset, while the remaining data were 
preserved, in order to compute accurate statistics. After splitting, the 
training and validation data points were then imported and converted to 
shapefiles on ArcGIS, and then imported to the GEE platform, in order to 
train and validate the Random Forest model. The classifier was trained 
using the code ‘ee. Classifier. Train ()’ to enable it to perform its suitable 
operations. The classification based on RF algorithm was done using the 
code ‘Image. Classify ()’ in GEE.

2.5. Accuracy assessment

The accuracy of the derived LULC change maps for the Shashe and 
Tugwi –Zibagwe sub-catchments was assessed using assessment 
matrices namely, the User’s Accuracy (UA), Overall Accuracy (OA) and 
the Producer’s Accuracy (PA). The accuracy assessments were computed 
and executed in GEE to bring confidence in the quality of the maps 
produced. In order to achieve this, 30 % of the data which was randomly 
split was adopted (Fig. 2a). In this research the Kappa analysis was also 
performed to strengthen the numerical accuracy values. The Kappa is 
commonly used to determine how consistently two or more raters assign 
the same categories or scores to the same items which was essential in 
LULC change thematic maps accuracy.

Fig. 2b. Steps taken to estimate soil loss in GEE.
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2.6. Soil erosion loss estimation

RUSLE was applied to model potential soil loss under each of the 
identified land use types using the steps in Fig. 2b. The RUSLE has been 
adopted model to potential soil erosion from field level up to sub- 
catchment scale (Paul et al., 2019). The model was adopted as it re
quires less data, free hence aiding in soil loss risk estimation for resource 
constrained areas (Farhan and Nawaiseh, 2016). It has been represented 
using the following equation: 

A=R * K * LS * C * P (1) 

where A is the annual average soil loss (t/ha/year); R is the rainfall 
erosivity factor (mm/ha/h/year), K -soil erodibility factor (ton/ha); LS 
-slope-length and slope-steepness factor, C - cover factor and P - support 
practice factor. The RUSLE parameters in this study were calculated 
using the methods illustrated in Table 2 following a detailed process as 
shown in the flowchart in Fig. 2b.

2.6.1. Rainfall erosivity factor (R)
R is one of the important parameters which directly depends on the 

strength and volumetric capacity of rainfall. The R factor refers to the 
potential that a rainfall has towards erosion that is usually derived by its 
intensity over a specific period (Wischmeier and Smith, 1978; Fenta 
et al., 2017). The key contributors to the R factor include rainfall in
tensity and duration. Raindrop or splash erosion is the primary form of 
erosion on exposed soil surfaces, leading to detachment and dispersion 
of soil particles, which are subsequently transported to downstream 
areas. The calculation of the R factor involves multiplying the maximum 
intensity of 30-min rainfall by the kinetic energy associated with indi
vidual rainfall events (Wischmeier and Smith, 1978). To obtain rainfall 
data for the period 2016–2023 the CHIRPS Data Service (The Climate 
Hazards Group Infrared Precipitation with Station Data) available in 
GeoTIFF was used. This format was adopted as it can be used to repre
sent precipitation values in a raster layer. The data was accessed using 
the code var current = CHIRPS.filterDate(date1, date2). select (’pre
cipitation’). sum (). clip(aoi); Map.addLayer (current, {}, ’Annual Rain’, 
0). The reported rainfall erosivity range of 338.57–573.37 MJ. mm. ha. 
hr 1. for the study area indicates significant variability in the erosive 
potential of rainfall events (Table 3).

2.6.2. Soil erodibility (K)
The Soil Erodibility (K) factor represents both susceptibility of soil to 

erosion and the amount and rate of runoff. Soil texture, organic matter, 
structure and permeability determine the erodibility of a particular soil. 
The K factor is calculated in Google Earth Engine using the method 
outlined in Table 2 in GEE having obtained data from global soils map. 
The erodibility factor was obtained from GEE using the procedure out
lined in Fig. 2b. The code used is soil = soil.select(’b0′).clip(aoi).rename 

(’soil’) Map.addLayer(soil, {min: 0, max: 100, palette: 
[’a52508′,’ff3818′,’fbff18′,’25cdff′,’2f35ff′,’0b2dab’]}, ’Soil’, 0); var K 
= soil. Expression. These were computed in the GEE platform using 
these predefined codes and later exported to Arc Map 10.5 in order to 
assess the soil erosion risk combined with other RUSLE factors. In this 
study, the applied soil erodibility factor in Table 3 ranged between 0.05 
and 0.14 t ha h (ha MJ mm) − 1. The provided values suggest that the 
soils in the study area exhibit varying degrees of vulnerability to erosion. 

Table 2 
Description of RUSLE factors and formula.

Factors Formula Descriptions and purpose Reference

R

R =
∑12

i=1
1.73*10

(

1.5*log

(
pm2

pa

)

− 0.08188

) R is the rainfall erosivity in MJ mm ha− 1 h− 1 year− 1, Pm 
is the monthly precipitation (mm) and Pa is the yearly 
precipitation (mm)

Wischmeier and Smith 
(1978).

K
K ¼ {0.2+0.3*exp

[

(− 0.0256*SAN*)
(

1.0 −
SIL
100

)]}

* 
(

SIL
CLA + SIL

)

|*|

⎧
⎨

⎩

1 −
(0.25*C)

(C + exp)(3.72 − 2.95*C)
.}*

(

1 −
SIL0.7*Sn

Sn + exp(22.9*Sn − 5.51)

)

*0.1317

.

CLA, SAN and SIL, are the mass fractions (%) of clay, sand, 
and silt,(Sn = 1 SAN/100), C is the mass fraction of soil 
organic carbon (%)It is the model used to determine the 
erosiveness of the soil

Wischmeier and Smith 
(1978); Alebachew 
et al. (2025)

LS
LS ¼

⎛

⎝Flow accumulation*
(Cellsize)

22.13
.0.4*

⎧
⎨

⎩

(
Sin (slope)*0.01748(.)

Sn + exp(22.9*Sn − 5.51)

)

.

⎞

⎠.}1.4
Slope lengthening and slope steepness factor Renard et al.(1997)

C
NDVI ¼

NIR − R
NIR + R 

C = exp 
(

− a
NDVI

(.β − NDVI)

)
To assess the vegetation’s capacity to protect the soil from 
erosion

Renard et al.(1997)

P 0.39 for agricultural lands and 1.0 for non-agricultural land (others) To evaluate the efficacy of soil and water conservation 
practices in safeguarding against soil erosion

Renard et al.(1997)

Table 3 
RUSLE parameter values and their sources.

Factors Values Source or estimation 
method

Reference

R The rainfall erosivity 
range of 338.57–573.37 
MJ. mm. ha. hr 1 was 
adopted.

The calculation of the R 
factor involves 
multiplying the 
maximum intensity of 
30-min rainfall by the 
kinetic energy 
associated with 
individual rainfall 
events. To obtain 
rainfall data for the 
period 2015–2023 the 
CHIRPS Data Service 
(The Climate Hazards 
Group Infrared 
Precipitation with 
Station Data) available 
in GeoTIFF was used.

Wischmeier 
and Smith 
(1978).

K Soil erodibility factor 
values ranged between 
0.05 and 0.14 t ha h (ha 
MJ mm) − 1.

The K factor is 
calculated in GEE using 
the method outlined in 
Table 2 having obtained 
data from global soils 
map.

Wischmeier 
and Smith 
(1978).

LS The result of the slope 
length steepness factor 
(LS) ranging from 1.7 to 
4848.8 suggests a wide 
variation in terrain 
characteristics within the 
study area.

The LS factor was 
calculated from the 30- 
m resolution DEM 
(Digital Elevation 
Model) and generated 
using SRTM in GEE.

Renard (1997)

C Incorporated within the 
RUSLE formula, the C 
factor varies from 0.001 
for dense forests to 1.0 for 
bare land

The C factor was 
derived for the study 
area by creating a 
mosaic of NDVI 
(Normalized Difference 
Vegetation Index) based 
on Sentinel-2 satellite 
imagery on the GEE 
platform

Renard (1997)

P 0.39 for agricultural lands 
and 1.0 for non- 
agricultural land (others)

Derived from LULC type 
and slope in GEE.

Paul et al., 
(2019); Renard 
(1997)
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A lower erodibility index (0.05) implies that the soil is relatively resis
tant to erosion, while a higher index (0.14) indicates a greater suscep
tibility to erosion processes.

2.6.3. Slope length and slope gradient
The elevation was generated using data from the Shuttle Radar 

Topography Mission (SRTM) derived digital elevation model (DEM). 
The SRTM DEM of 30m resolution was obtained from GEE platform. The 
data was accessed using the code var Digital = ee.Image("USGS/ 
SRTMGL1_003″); var DEM = Digital.clip(aoi); print(DEM); var elv =
DEM.select(’elevation’); print(elv, ’elevation’); var slope1 = ee.Terrain. 
slope(elevation).clip(aoi);. The DEM was used to calculate the slope 
length and steepness factor (LS factor). These factors are joined as one 
entity in RUSLE to depict slope length (Yesuph and Dagnew, 2019). The 
flow accumulation and slope gradient were figured from the DEM in 
order to come up with the Slope length and gradient. Following that, an 
empirical relationship is established between these topographic char
acteristics and the likelihood of soil erosion in GEE (Table, 2). It is noted 
that soil erosion tends to increase with steeper slope gradients and 
longer slope lengths. The result of the slope length steepness factor (LS) 
ranging from 1.7 to 4848.8 suggests a wide variation in terrain char
acteristics within the study area (Table 3).

2.6.4. Cover management factor (C)
Determining the crop management factor (C) is crucial for evaluating 

the efficacy of support strategies. This factor estimates the soil loss ratio 
when employing support techniques compared to conventional up and 
downslope farming methods. The C factor was derived using the NDVI 
which is positively correlated with the amount of green biomass on the 
land (Durigon et al., 2014). Dzawanda and Ncube (2022) are of the view 
that, remotely sensed data provide time series data on land cover hence 
making it easy to derive C-factor. In this case, remotely sensed data were 
manipulated to derive the C factor in GEE platform for each year in the 
two rural dominated sub-catchments. The Sentinel 2 MSI data was used 
to derive the NDVI maps from bands 2 (blue), 3 (green, 10m), 4 (red, 
10m), 8 (near infrared, 1m) and 11 (SWIR, 20m). The C-factor is 
calculated using the relevant formula of NDVI considering the red and 
NIR bands on the Google Earth engine. The formula used to calculate 
NDVI is stated in Table 2. The C factor varies from 0.001 for dense 
forests to 1.0 for bare land (Table 3).

2.6.5. Support practice (P)
The support practice factor (P) is an expression used to define the 

efficiency of the conservation practices in place for instance contouring 
and terracing against the intensity of surface runoff in a bid to reduce soil 
erosion (Paul et al., 2019). Incorporated in the RUSLE, the P factor adjusts 
for the effects of soil conservation practices. The P value ranges from 0 to 1 
whereby ‘0’ indicates the most relevant conservation activities and ‘1’ 
indicating the least relevant. Essentially, the P factor quantifies the 
reduction in soil loss achieved by a particular erosion control practice 
compared the scenario where no such measures are implemented. To 
calculate the p factor, we created a code in GEE that combines the slope 
map with land use data. var lulc = Sentinel 2.filterDate(date1, date2). 
select(’LC_Type1’).first().clip(aoi).rename(’lulc’); Map.addLayer (lulc, {}, 
’lulc’, 0)//Combined LULC and slope in single image var lulc_slope = lulc. 
addBands(slope). Specific values were assigned per land use which varies 
between 0 and 1. The P factor was calculated from a land use map and 
0.39 for agricultural land use and 1 for other uses (Table 3).

2.7. Estimating the impact of LULC on soil erosion potential in the distinct 
rural landscapes

In this study, it was important to understand the link between LULC 
change and soil erosion occurrence and intensity. The classified LULC 
maps which were used as input for the RUSLE were analysed together 
with soil loss maps (Fig. 2a and b). In this case, the first step was to 

obtain samples of classified land cover types from the thematic maps 
derived in GEE. For each land cover samples were taken across and later 
produced polygon shapefiles which were later imported into the GEE 
cloud computing platform. Once these samples with selected pixels’ 
values for each land cover were overlaid on the thematic soil loss maps, 
the researcher made use of the inspector function to estimate the soil loss 
values for each land cover type. This means that all the selected samples 
were selected each and analysed to come up with the average potential 
soil loss for each extracted value. The same approach was also used to 
establish the maximum and minimum soil loss values for each land use 
type per each year. This therefore enabled further statistical analysis so 
as to validate the findings, as it allowed for calculation of the standard 
deviation of annual loss values for the Shashe and Tugwi-Zibagwe sub- 
catchments. This attribute is important as it enables easier depiction of 
the dispersion of the values so that there is informed basis on the vari
ability of soil loss in the areas.

2.8. Time series analysis-man kendall test

The Mann-Kendall test is a statistical method used to detect a 
monotonic (increasing or decreasing) trend in a time series of data. It is a 
non-parametric test that provides information about the presence and 
direction of a trend, as well as its statistical significance. The MK test in 
this study can be used to identify if there’s a significant trend (increasing 
or decreasing) in either soil loss or NDVI values between 2016 and 2023 
for both Shashe and Tugwi-Zibagwe sub-catchments, or if there’s a 
significant correlation between the two. In essence, the MK test is a 
valuable tool for analysing long-term trends in soil loss and NDVI, 
providing insights into potential relationships between these factors.

3. Results

3.1. Accuracy assessment results

In this study, accuracy assessment was performed through the error 
matrix and Kappa analysis. Table 4 illustrates classification accuracies 
derived from Sentinel-2 analysis ready data set for the period between 
2016 and 2023. The OA, based on the RF algorithm, ranged between 77 
% and 91 % for Shashe, Tugwi and Zibagwe sub-catchments. The results 
indicated a robust contract and good accuracy based on the established 
thresholds. Therefore, it was inferred that the classification was imple
mented with good accuracy (±75 %).

The results from the Sentinel 2 MSI applied in the study yielded good 
UA and PA values of above 50 % for most of the land cover types in the 
rural dominated sub-catchments (Shashe, Tugwi and Zibagwe) for the 
years 2016, 2020 and 2023. In line with this, the highest PA of 100 %, 
using Sentinel-2, were obtained for water class and plantation for the 
years 2020 and 2023 which demonstrates good agreements, whereas 
lower PA values 66 % were obtained for grasslands in 2020 for the 
Shashe sub-catchment (Table 4). For the Tugwi-Zibagwe sub-catchment 
water and plantation recorded high PA for Sentinel-2 (100 %) for the 
years 2020 and 2023, with the least values being obtained for grasslands 
(60 %) for 2020. During the same period under study, for the Shashe 
water had the highest UA of 100 % with grasslands recording 60 % 
which was the lowest in the year 2020 compared to the other land 
classes. For the Tugwi-Zibagwe higher values for UA were obtained for 
water and built-up areas (100 %), with the lowest that is 60 % being 
recorded for grasslands in 2023. In terms of kappa statistics, the values 
were above 50 % for both Shashe and Tugwi-Zibagwe sub-catchments. 
The highest kappa value was recorded for woodlands in 2020 for the 
Shashe sub-catchment with the results being above 70 % which shows 
strong agreement (Table 4).

3.2. LULC changes in the rural dominated sub-catchments

The study findings revealed that machine learning coupled with 
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Sentinel-2 analysis ready blue sky data sets (2016, 2020 and 2023) 
produces accurate results. These results show that there are seven land 
covers which vary in Shashe and Tugwi–Zibagwe sub-catchments. The 
LULC changes for both sub-catchments are presented in Fig. 3a and b 
and Table 5.

The results show that the most dominant cover for the Shashe sub- 
catchment in 2016 was woodlands which occupied 28.81 %, followed 
by plantation occupying 25.49 %. Cultivated lands also occupied 24.49 
% of the total sub-catchment, whilst eroded areas were reported to 
occupy 3.11 %. The least class in the Shashe sub-catchment was the area 
occupied by water (1.3 %). This was slightly different from Tugwi- 
Zibagwe sub-catchment where, grassland was the predominant land 
cover as it occupied 45.51 % of the total land area in 2016, followed by 
woodlands covering 25.2 % (Table 5). Eroded areas were observed along 
major drainage networks and areas with poor soil characteristics which 
had potential to result in loss of top soil cover hence leading to further 
degradation, especially in the central to northern parts (Fig. 3a). In this 
case, poor soil characteristics refer to a range of negative traits in soil 
that hinder its ability to support healthy plant growth and overall 
ecosystem function. These characteristics can impact soil fertility, 
structure, drainage, and other vital properties rendering the soil unable 
to support plant growth hence exposed to erosion. Eroded areas which 
were the focus of the study occupied 2 % in the same year. The least class 
among all other classes was built-up areas covering 1.8 % which how
ever increased to 3.32 % in 2020. However, in both sub-catchments, 
grassland cover constituted an integral component compared to other 
LULC types (Table 5).

The results of the study clearly depict that there were significant 
LULC changes marked by an increase in the area occupied by cultivated 
areas from 24.49 % (2016) to 27.88 % in 2020 for the Shashe sub- 
catchment. This increase was at the expense of plantation area which 
largely decreased from 24.88 % to 5.89 % which shows a decrease of 
76.2 %. In addition, woodlands which covered 20.82 % in 2016 
decreased to 9.93 % of the total area which translated into a loss of 
52.46 % (Table 5). Comparatively, the area covered by grasslands 
increased by 8.3 % of the total sub-catchment area in 2020. The domi
nant land cover change between 2016 and 2020 was reported for eroded 
areas. The area covered by eroded surfaces increased by 60.38 % in the 
year 2020. This was at the expense of the area covered by water, 
grasslands and woodlands as some areas were cleared for development 
and cultivation in the rural dominated sub-catchment hence open areas 

Table 4 
LULC classification accuracy for Shashe, Tugwi- Zibagwe sub-catchment over 
the years.

Sub-catchment name Year Land cover class PA UA Kappa

Shashe 2016 Water 100 100 87
Plantation 77.2 89.4 76
Cultivated 100 83.72 75
Grasslands 90 85.71 76.76
Woodlands 78 88 77
Eroded areas 80 83.33 76.85
Built-up 53.33 80 76

2020 Water 100 100 78
Plantation 100 100 95
Cultivated 86.36 67.85 70
Grasslands 66.66 63.15 70
Woodlands 85.18 85.16 75.71
Eroded areas 90 66.66 50
Built-up 67 78 75

2023 Water 100 100 78
Plantation 81.2 92.81 78.2
Cultivated 90 79.41 80
Grasslands 78 77.91 78
Woodlands 91.17 89.85 91.17
Eroded areas 80 85.71 75
Built-up 76.66 80 77.66

Tugwi-Zibagwe 2016 Water 100 100 88
Plantation 76.9 71.4 78
Cultivated 87.5 87.5 77.5
Grasslands 87.1 75 75.4
Woodlands 78.9 75 87.8
Eroded areas 85.72 52.85 83.33
Built-up 100 100 70.7

2020 Water 100 100 76
Plantation 100 97.22 77
Cultivated 100 95.55 76
Grasslands 67.66 66.66 70
Woodlands 96 84.4 76
Eroded areas 90 70 76
Built-up 73.33 100 75

2023 Water 100 100 78
Plantation 100 100 79
Cultivated 87.5 80.7 72
Grasslands 89.4 60 76
Woodlands 87.8 96.6 75
Eroded areas 83.33 62 76
Built-up 70.7 80.33 70

Fig. 3a. Derived LULC maps to show the LULC types in Shashe sub-catchment in different years.
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were exposed.
In Tugwi–Zibagwe sub-catchment, grassland area which covered 

43.51 % in 2016 increased to 65.14 % in 2020 which accounts for an 
increase of 43.12 %. The same land cover reduced by 43.92 % in the year 
2020 which can be attributed to increase in the area covered by culti
vation. Cultivated area increased which was accompanied by a signifi
cant decrease in the area covered by water from 2020 although it 
increased by small proportions in the year 2023 due to improved rainfall 
patterns across the sub-catchment area (Fig. 3b). The area covered by 
plantation reduced by 97 % for the year 2020 and while cultivation 
significantly increased by the year 2023 due to increases in precipitation 
which enhanced the activities linked to this land cover. The area covered 
by woodlands also increased while at the expense of plantation areas 
which saw a decrease due to deforestation practices mainly for timber 
logging. Deforestation was observed to be presenting serious challenges 
which is unchecked would reduce ground cover hence increasing sus
ceptibility to soil erosion risk.

Conversely, plantation areas which occupied decreased from 11.43 
% in the year 2016 to 0.25 % in 2020 and 0.46 % in 2023 (Table 5). The 
area covered by erosion shows a significant increase of 92.77 % 

although at the expense of woodlands and grasslands areas which 
significantly reduced between 2016 and 2020 in the Tugwi–Zibagwe 
sub-catchment area. This could be attributed to land conversion for 
other land uses which resulted in creation of bare surfaces hence 
exposing the soil to the various agencies of erosion. Soil erosion was 
therefore observed to be increasing from 2016 to 2020 especially along 
cultivated land. Areas with severe degradation were also detected in 
Chivi district as top soil is washed away. This can be attributed to 
extensive grazing which exposes the soils to various agencies of erosion. 
Therefore, the problem is not grazing but the incorrect grazing man
agement. It is clear that, all the sub-catchments experienced noticeable 
LULC especially cultivated areas, grasslands and woodlands in the past 
decade. For both sub-catchments, cultivated areas recorded the most 
significant increase followed by woodlands and grasslands while at the 
expense of water cover which reduced remarkably. In the Shashe sub- 
catchment, dominant changes in areas covered by erosion were 
observed in 2016 as a result of land conversion for several use. The 
purpose for clearing land in Tugwi–Zibagwe was mainly for logging 
activities and agriculture.

Fig. 3b. Derived LULC maps to show the LULC types in Tugwi-Zibagwe sub-catchment in different years

Table 5 
LULC change in Shashe and Tugwi –Zibagwe rural dominated sub-catchments (measured in km2 and proportion of change in percentages) between 2016 and 2023.

Sub-catchment name Land cover type 2016 Area (km2) 2020 Area (km2) Change Area (km2) % Change 2023 Area (km2) Change Area (km2) % Change

Shashe Water 247 (1.3) 7.901 (0.04) 229.34 − 89.81 19 (0.10) 11 0.15
Plantation 4733 (25.49) 1122 (5.89) 3611.90 − 76.20 1843 (9.68) 721 64.29
Cultivated + bare 4850 (24.49) 4925 (27.88) 74.83 1.54 6777 (35.62) 1851 37.59
Grasslands 3998 (22.82) 1890 (9.93) 2040.65 − 52.28 5418 (28.47) 3527 86.54
Woodlands 5102 (28.81) 5527 (29) 425.04 8.33 2071 (10.88) 3456 − 62.52
Eroded areas 392 (2.11) 4166 (18.89) 3474.65 40.38 3127 (16.43) 447.367 − 10.73
Built-up 535 (1.81) 631 (3.32) 98.528 18.40 618 (3.24) 13.368 2.11

Tugwi –Zibagwe Water 700 (4.10) 105 (0.71) 794.41 − 88.26 112 (0.75) 658 12.65
Plantation 1687 (11) 37 (0.25) 1649.37 − 97.76 69 (0.46) 31.516 83.46
Cultivated + bare 2105 (17.27) 1711 (11.59) 393.5 − 18.68 3151 (21.36) 1439.85 84.10
Grasslands 6714 (43.51) 9610 (65.14) 2895.50 − 43.12 6157 (41.73) 3452.21 35.92
Woodlands 2924 (25.2) 2175 (14.74) 748.51 − 0.25 4653 (31.54) 2478.29 113.91
Eroded areas 230 (1.23) 830 (5.62) 546.51 92.77 199 (1.34) 630.902 − 76
Built-up 283 (1.7) 380 (2.57) 50.3 15.21 406 (2.75) 26.031 6.83
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3.3. Assessing the potential soil loss risk using RUSLE model in the sub- 
catchments

RUSLE factor parameter raster maps were fused to produce the 
thematic soil loss maps (2016, 2020 and 2023) for the Shashe and 
Tugwi–Zibagwe sub-catchments respectively. The Shashe and Tug
wi–Zibagwe sub-catchments were divided into five soil erosion risk 
classes that is from slight to severe.

Results show that, soil loss ranged from 0 to over 100 t ha− 1 year− 1 

(Fig. 4a and b). It can also be noted that the lowest risk of erosion had an 
annual soil loss of 10 t ha− 1 year− 1 and highest risk >100 t ha− 1 year− 1 

for the Shashe sub-catchment (Fig. 4a). The highest risk of soil erosion 
tends to be more concentrated in the north-eastern parts especially for 
the Shashe sub-catchment and along drainage networks. Comparatively, 
the Tugwi –Zibagwe had considerable high erosion risk on the central 
and southern parts mainly around agricultural fields in communal areas. 
In the Tugwi–Zibagwe sub-catchment the lowest risk of erosion was 
observed to be 8 t ha− 1 year− 1 and highest risk of erosion reaching 100 t 
ha− 1 year− 1 (Fig. 4b).

The areas containing agricultural fields which were exposed to 
tillage methods displayed the greatest soil erosion potential. These areas 
had significantly high C values. Most of these areas are located on the 
Northern parts of the Shashe and for the Tugwi–Zibagwe on the south- 
western parts (Fig. 4a and b). Areas on gentle slopes had tolerable 
levels of erosion as the slope would provide conditions that prevent the 
soil from being lost.

Tables 6 and 7, depict the soil loss dispersal in the rural dominated 
sub-catchments spread across five severity classes. The study findings 
show that in 2016 about 84.7 % of the Shashe sub-catchment had slight 
of soil erosion rates, whereas moderate and high rates accounted for 
13.9 % and 0.9 % respectively. Comparatively, the areas affected by very 
high and severe soil loss rates occupied 0.5 % of the sub-catchment 
(Table 6). The soil rates somewhat changed in the year 2020, as areas 
with slight erosion occupied 8.9 % and moderate soil erosion covering 
80.4 % whereas high (6.9 %) and severe erosion occupied 1.8 % of the 
sub-catchment.

Results demonstrate that, in the Tugwi –Zibagwe sub-catchment area 
it is evident that the central and southern parts are more eroded due to 
crop cultivation and proliferation of artisanal mining operations. The 
study findings further show that in 2016 about 86 % of the Tugwi- 
Zibagwe sub-catchment had slight soil loss, whereas areas affected by 

moderate rates encompass 12.5 %. However, high erosion hazard 
pockets were reported to be a common feature on the north-eastern parts 
of the study area (0.9 %) due to the expansion of settlements. Addi
tionally, areas with very high and severe rates of erosion which require 
intervention occupied 0.6 % of the total sub-catchment (Table 7). 
Further, severe erosion was experienced on (0.3 and 0.2 %) respectively 
for the Tugwi-Zibagwe sub-catchment (Table 7).

Comparatively, the Shashe sub-catchment area is experiencing high 
rates of erosion with units of dispersion indicating the ranges. Interest
ingly, the soil rates show some changes with regards to the classes of 
erosion rates in Tugwi–Zibagwe sub-catchment. For instance, in the year 
2023 areas with slight erosion occupied 62.4 % and moderate soil 
erosion covering 36 % whereas high and severe occupied 0.6 % of the 
total sub-catchment area. The results clearly indicate severe soil loss was 
generated on the central part (Fig. 4a). Elsewhere, low levels of erosion 
could be observed in areas with gentle slopes and low cover manage
ment factor. Results also revealed that, in terms of priority for conser
vation, the areas experiencing slight erosion risk are not in dire need of 
restoration. On the other extreme, it is clear that areas experiencing 
severe erosion should be given priority as there is urgent need to restore 
these disturbed areas in the rural dominated sub-catchments in 
Zimbabwe.

3.4. Impact of changing land-use patterns on soil erosion occurrence and 
intensity

The Shashe sub-catchment showed mean soil losses of 15.75, 45.25, 
and 23.51 t ha− 1 year− 1 for 2016, 2020, and 2023, respectively. Results 
in Table 8 show erosion accelerated by LULC change over the study 
period and demonstrates fluctuations on the rate of soil loss based on the 
units of dispersal shown (Table 8). It is clear that cultivated + bare land 
which is cleared in all the distinct landscapes (2016, 2020 and 2023) 
appears to have maximum soil loss values which tend to be increasing 
55–70 t ha− 1 year− 1 (Table 8) with the highest being recorded for the 
year 2020. For example, in Shashe, cultivated land which occupied a 
significant proportion was exposed to severe soil erosion with minimum 
values being recorded on plantation (3 t ha− 1 year− 1 (Table 8) and areas 
covered by water. In its strict sense, higher soil loss tends to be recorded 
in areas with crops attributed to intensive ploughing using mould board 
ploughs which turn the soils over hence affecting the texture. Similar to 
this, the area under plantation also experienced moderate to high 

Fig. 4a. Map showing spatial variations of soil loss in Shashe sub-catchment.

T. Musasa et al.                                                                                                                                                                                                                                 Journal of Arid Environments 229 (2025) 105407 

10 



erosion which averaged between 9 and 15 t ha− 1 year− 1.The same cover 
recorded maximum soil loss values of 18 t ha− 1 year− 1 (Table 8) which 
increased to about 36 t ha− 1 year− 1 (Table 8) between 2016 and 2020 
which clearly shows that temporal LULC changes were also a significant 
factors in as far as soil loss risk is concerned in Shashe sub-catchment.

Another noticeable example of the impact of LULC was on grasslands 
(mainly used for grazing) which experienced an average loss of 12–20 t 
ha− 1 year− 1 (Table 8). This same land cover also experienced maximum 
soil loss values which increased from 20 to 35 t ha− 1 year− 1 (Table 8) 
between 2016 and 2023 which was the highest for this cover. This was 
followed by the area under woodlands which were observed to be dis
appearing. It is clear that, slight to moderate erosion was experienced in 
areas covered by woodlands although they were observed to be 
threatened by deforestation. As the area covered by woodlands 
decreased there was exposure to erosion which averaged between 10 
and 17 t ha− 1 year− 1. The area covered by woodlands recorded and 
increase from 27 to 30 t ha− 1 year− 1 (Table 8) with a standard deviation 
of 7 as shown by the units of dispersion. Soil erosion potential was also 
observed in areas covered by water and built-up areas although not 
severe when compared to others. These two respective land classes had 
an annual average loss that ranged between 1 and 5 t ha− 1 year− 1. In 
some cases, the areas surrounding these land covers also recorded 
maximum soil loss between 3 and 9 t ha− 1 year− 1 (Table 8) which shows 
that there was an increase in the soil erosion risk with time that is 
attributed to LULC in the Shashe sub-catchment area.

Fig. 4b. Map showing spatial variations of soil loss in Tugwi-Zibagwe sub-catchment.

Table 6 
Annual soil erosion rates and area coverage in the Shashe sub-catchment.

Soil loss 
rates (t 
ha− 1 

year− 1)

Severity 
classes

Area (km2) experiencing soil 
loss in Shashe sub-catchment

Percent of total

2016 2020 2023 2016 2020 2023

<10 Slight 16,109 1700 6998 84.7 8.9 36.8
10–40 Moderate 2650 15,290 11,561 13.9 80.4 60.8
40–70 High 165 1314 361 0.9 6.9 1.9
70–100 Very high 53 376 69 0.3 2 0.4
>100 Severe 47 344 35 0.2 1.8 0.2

Table 7 
Annual soil erosion rates and area coverage in Tugwi –Zibagwe sub-catchment.

Soil loss 
rates (t 
ha− 1 

year− 1)

Severity 
classes

Area (km2) experiencing 
soil loss in Tugwi –Zibagwe 
sub-catchment

Percent of total

2016 2020 2023 2016 2020 2023

<10 Slight 12,686 12,378 9209 86 83.9 62.4
10–40 Moderate 1850 2259 5317 12.5 15.3 36
40–70 High 137 86 162 0.9 0.6 1.1
70–100 Very high 39 19 38 0.3 0.1 0.3
>100 Severe 39 8 25 0.3 0.1 0.2

Table 8 
Summary of soil loss values from each land use over time in Shashe sub-catchment.

Land Cover/Use Type Unit of dispersion per each Land cover per year (t/ha/year)

2015 2020 2023

Min Mean Max SD Min Mean Max SD Min Mean Max SD

Water 1 2.23 4 0.75 0.80 4 3 13 0.30 1.78 3 0.65
Plantation 3 9 18 3.75 5 18 36 7.75 6 15 35 7.25
Cultivated + bare 7 27 55 12 3 48 70 16.75 7 38 60 13.25
Grasslands 4 12 20 4 3 20 30 6.75 2 13 35 8.25
Woodlands 3 10 27 6 2 17 30 7 3 12 25 5.5
Eroded area 4 15 25 5.25 6 20 45 9.75 4 13 26 5.5
Built-up area 0.5 1.88 4 0.87 2 7.5 3 2.5 2 5 9 1.75
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In the Tugwi-Zibagwe sub-catchment, mean soil losses recorded 
were 11.62, 18.45, and 37.34 t ha− 1 year− 1 for the years 2016, 2020 and 
2023 (Table 9). Comparatively, findings show that of all land covers in 
Tugwi-Zibagwe, the area under cultivation experienced high soil erosion 
risk which averaged between 16 and 21 t ha− 1 year− 1. This same land 
cover in 2020 obtained maximum values of 56 t ha− 1 year− 1. This 
maximum was however reduced in the year 2023 to 42 t ha− 1 year− 1 

although at the expense of other land cover type due to improper 
farming and cultivation activities which often expose the soil to agents 
of erosion. This clearly shows that the areas under cultivation which are 
often cleared increase the magnitude of soil erosion on the rural domi
nated areas. Similarly, another land cover type that experienced soil loss 
is grasslands which had a maximum of 18 t ha− 1 year− 1 for the year 
2016 (Table 9), with minimum values ranging between 2 and 3 t ha− 1 

year− 1 which signify the increasing trend of soil loss over time and with 
changing land use cover.

Results based on dispersion values to provide a more nuanced view 
of the impact of LULC also show that woodlands were affected by 
erosion. Results of LULC maps show that this cover was observed to be 
reducing with time which undoubtedly left room for erosion as the size 
reduced from 2010 to 2023 in the areas to the south western parts 
(Fig. 3b). In this manner, the area covered by woodlands which was 
decreasing had maximum soil loss values of 19 t ha− 1 year− 1. In the year 
2016, which further increased due to reduction in size of the area 
recording maximum soil loss values of 29 t ha− 1 year− 1 which clearly 
shows that the LULC had a bearing in as far as soil erosion occurrence 
and intensity is concerned in the Tugwi-Zibagwe sub-catchment. Results 
from the LULC of 2010, 2020 and 2023 show that water was also 
affected by soil erosion which averaged between 2 and 5 t ha− 1 year− 1. 
Similar to this, the area under built up were increasing as a result of 
encroachment in pristine areas as local people established settlements 
especially in areas close to drainage networks which had potential to 
increase soil erosion rates. Soil erosion in the Shashe and Tug
wi–Zibagwe sub-catchment resulted in the loss of soil fertility.

The Mann-Kendall test results indicated no statistically significant 
changes in both NDVI (Kendall tau slope = 0.36; p = 0.28) and annual 
soil loss (Kendall tau = 0.26; p = 0.63) in the Shashe sub-catchment. 
This shows that NDVI values were declining but not following a statis
tically significant (p > 0.05) (Table 9) trend whilst annual soil loss was 
generally declining when compared to the 2016 and 2020 years. This 
shows that NDVI values which are an indicator of vegetation health was 
declining but not following a statistically significant trend whilst soil 
loss was generally declining when compared to the 201–2020 scenarios. 
Results in Table 9 further show that, just like the Tugwi-Zibagwe sub- 
catchment there were no statistically significant changes in both NDVI 
(Kendall tau slope = 0.33; p = 0.20) and annual soil loss (Kendall tau =
0.11; p = 0.57). This also clearly shows that NDVI values were declining 
but not following a statistically significant (p > 0.05) (Table 10) trend 
whilst annual soil loss was generally declining when compared to the 
2016 and 2020 years.

4. Discussion

4.1. LULC changes in the rural dominated sub-catchments

The study aimed to model potential soil erosion in two distinct rural 
landscapes in Zimbabwe. Thus, the primary objectives are to: assess 
spatio-temporal LULC changes in distinct rural landscapes; assess the 
soil erosion risk using a multi-pronged approach. Results clearly 
demonstrate that Analysis ready data sets (Sentinel 2) combined with RF 
classification algorithm can accurately map LULC. The results clearly 
depict that there are land covers which vary as a result of several 
changes which have occurred in the rural landscapes. OA of the analysis 
ready data for the Shashe and Tugwi–Zibagwe sub-catchment classified 
maps is (±75 %). Likewise, the kappa coefficient ranged between 70 % 
and 92 % respectively which indicated good accuracy based on the 
established thresholds (Obiahu and Elias, 2020). High PA and UA were 
observed for the Shashe sub-catchment for the years 2020 and 2023, 
with low values around 60 % being recorded for land covers such as 
grasslands. It is therefore, clear that the accuracies derived were within 
the suitable ranges as indicated in previous studies by Gwitira et al. 
(2016). Thus, the results were more accurate, an attribute which is 
essential as it brings confidence to the users as well as aid in promul
gation of soil conservation strategies. This also demonstrates the study’s 
significance as it integrates high resolution data (Sentinel 2) with ma
chine learning approaches which improved the accuracy thus also 
enhancing the quality of assessments a feature missing in other previous 
soil erosion studies conducted.

This work showed that the most dominant cover for the Shashe sub- 
catchment in 2016 was woodlands, followed by plantation areas. The 
least dominant class reported for the Shashe sub-catchment was the area 
occupied by water owing to changing rainfall patterns in the area. 
However, there has been marked decrease in the area covered by the 
grasslands as it is used for various activities such as uncontrolled live
stock grazing. Such practices have a significant bearing as vegetation is 
cleared and also subjected to cattle trampling which increases the rate of 
soil erosion. As such, the problem of erosion continues to be experienced 
if there is incorrect grazing management hence the need for controlled 
and planned grazing. This clearly shows that a combination of social and 
environmental factors drives land use change, a situation which has 
potential to influence the rate and intensity of soil erosion in sub- 

Table 9 
Summary of soil loss values from each land use over time in Tugwi-Zibagwe sub-catchment.

Land Cover/Use Type Unit of dispersion per each Land cover per year (t/ha/year)

2016 2020 2023

Min Mean Max SD Min Mean Max SD Min Mean Max SD

Water 0.40 2 3 0.65 1 3 6 1.25 1 5 7 1.5
Plantation 2 6 11 2.25 2 8 15 3.25 2 7 13 2.75
Cultivated + bare 5 16 30 6.25 8 25 56 12 7 21 42 8.75
Grasslands 3 9 18 3.75 4 11 23 4.75 2 8 15 3.25
Woodlands 4 9 19 3.75 5 15 29 6 4 10 19 3.75
Eroded area 1 5 9 2 4 10 21 4.25 3 14 27 24
Built-up area 0.4 1.56 3 0.65 1 5.67 9 2 1 4.57 8 1.75

Table 10 
Summary of Mann-Kendal Tests for the Shashe and Tugwi-Zibagwe sub- 
catchments.

Shashe sub-catchment Variable/parameter Kendall’s tau p- 
value

NDVI 0.36 0.28
Mean annual soil loss 0.26 0.63

Tugwi-Zibagwe sub-catchment Variable/parameter Kendall’s tau p- 
value

NDVI 0.33 0.20
Mean annual soil loss 0.11 0.57
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catchment areas. Similarly, Paul et al., (2019) observed that LULC 
changes tend to vary from time to time as a result of hence affecting the 
rate of soil erosion. This position was slightly different from Tugwi 
–Zibagwe sub-catchment where, cultivated area was the predominant 
land cover as it occupied about 43.5 % of the sub-catchment in 2016.

The major differences in the land covers observed can be attributed 
to drivers such as population growth, settlement expansion and land 
clearance for agriculture to boost food production (Ota et al., 2024). 
Previous studies in Zimbabwe, for example Dzawanda and Ncube 
(2022), revealed that sustainable food production is yet to match with 
population increase as most people are food insecure. This therefore 
clearly shows that there is need to integrate the environmental and 
socio-economic factors into soil erosion risk models to enhance decision 
making. Increased artisanal activities in the sub-catchment areas 
(Tugwi) also resulted in vegetation clearance. Therefore, LULC have 
negative impacts on biodiversity status which requires intervention 
(Abdulkareem et al., 2019). A study by Obiahu and Elias (2020) in 
Nigeria proved that there is need to come up with a set of strategies that 
can be aligned into land use planning and conservation strategies so as to 
address the socio-economic drivers of land use changes which are the 
main drivers of soil erosion.

Results demonstrate that eroded areas are more common along 
major drainage networks and areas which cannot support plant growth 
in Shashe sub-catchment. The central to northern parts of the sub- 
catchments had potential to result in loss of top soil cover accelerating 
further degradation. Dube et al. (2017) observed that in King Sabata 
weak soils are prone to severe degradation which complicates efforts 
aimed at promoting at conserving natural resources. The central part of 
the Tugwi was exposed to severe erosion as top soil is washed away. The 
underlying causes include extensive grazing which exposes the soils to 
erosion. Therefore, it can be concluded that this combined with cattle 
trampling loosened soils affecting the geomorphology of the area as the 
soil is vulnerable (Musasa et al., 2024).

4.2. Assessing the potential soil loss risk in the sub-catchments

The results derived from this study indicate that the sub-catchments 
suffer from unprecedented soil losses, ranging from 10 t ha− 1 year− 1 and 
>100 t ha− 1 year− 1. These high values far exceed the estimated mean 
soil loss tolerance rates proposed across the world which range between 
12 and 15 t ha− 1 year− 1 which shows that the sub-catchment under 
study have been experiencing severe soil loss (Ashiagbor et al., 2013). 
This increased soil loss risk has potential to affect soil physical charac
teristics which may result in reduced fertility rendering the soils un
productive for agriculture. The erosion hazard maps for 2016 and 2023 
in Shashe show that a small portion covered by water in the 
sub-catchment was in the low erosion hazard class, which aligns with 
findings by Paul et al., which also adopted RUSLE and machine learning 
approaches. However, the risk of erosion tends to be more concentrated 
in the north-eastern parts of the study areas, especially for the Shashe 
sub-catchment and along drainage networks. This was due to the 
expansion of settlements as well as land clearance for several purposes, 
deforestation was high as a result of increased demand for firewood for 
commercial uses a position also confirmed by Dzawanda and Ncube 
(2022). In the Tugwi–Zibagwe sub-catchment it was found that the areas 
with high slope gradient and high C values were associated with high 
annual soil loss.

Results further show that the Western parts of the Shashe and Tugwi 
–Zibagwe sub-catchments had slight erosion. As a result, especially for 
the Tugwi –Zibagwe there is controlled grazing, area closure, terrace, 
grass strip management which has enabled restoration efforts. These 
different strategies employed by the local community in the distinct 
rural landscapes were aiding in restoration of degraded areas. Similar to 
this, findings from a study by Yesuph and Dagnew (2019) in the Gedalas 
watershed located in Ethiopia indicated that local communities as cus
todians employ various strategies to control soil erosion. It is clear that 

areas experiencing severe risk of annual soil loss (>100 t ha− 1 year− 1) 
are in dire need of SLM practices. Areas experiencing severe erosion in 
the Tugwi–Zibagwe sub-catchment were occupied by crop lands and in 
some cases on bare surfaces which are exposed to soil erosion which 
calls for the need to come up with interventions to foster sustainable 
development.

It is clear that, slope angle and slope length significantly influenced 
soil erosion rates in the Shashe and Tugwi –Zibagwe sub-catchments. A 
clear view from a slopes dimension, shows that soil loss becomes more 
pronounced as slope gradient increases across. The areas with slope 
gradients that were higher than 65 % were observed to experience se
vere soil loss rates. As such, these factors trigger soil erosion com
pounded by improper land management practices (Abdulkareem et al., 
2019). This finding is in agreement with Paul et al., (2019) and Phinzi 
et al. (2021) who reported that in case of high erosion hazard, con
touring methods should be put in place. In the Tugwi–Zibagwe 
sub-catchment the slope is more even when compared to Shashe 
sub-catchment hence resulting in tolerable values of soil loss. Differ
ences in severity classes of soil loss risk were also observed across both 
Shashe and Tugwi–Zibagwe sub-catchments and had potential to result 
in further degradation if unchecked. It is clear that areas experiencing 
severe risk of annual soil loss (>100 t ha− 1 year− 1) are in dire need of 
sustainable land management (SLM) practices. Areas experiencing se
vere erosion in the Tugwi–Zibagwe sub-catchment were occupied by 
crop lands and in some cases bare surfaces.

4.3. Impact of changing land-use patterns on soil erosion occurrence and 
intensity

The study findings reveal that changing land use patterns influence 
the extent of soil erosion in rural dominated sub-catchments. The find
ings clearly show that soil losses were considerably high for cultivated +
bare land areas. Similarly, Abdulkareem et al. (2019), reported that 
higher soil loss values are experienced in areas with crops where culti
vation on steep slopes and intensive ploughing is practiced. This argu
ably turns the soils over hence affecting the geomorphology of the area 
hence increasing the frequency and extent of erosion (Yesuph and 
Dagnew, 2019; Marondedze and Schütt, 2020). Additionally, slight to 
moderate erosion was experienced in areas covered by woodlands 
threatened by deforestation a position also confirmed by Paul et al., 
(2019). However, changes in land use patterns for instance clearance of 
forested areas to promote cultivation affected the soil texture and ability 
to with stand erosive agents. The end result is increased frequency and 
intensity of erosion which continues to present problems. Analysis of the 
above information clearly shows that there are variations in the rate of 
soil loss which can be necessitated by changing land use patterns over 
time hence the need to come up with restoration activities especially for 
rural dominated areas.

Soil erosion in the Shashe and Tugwi –Zibagwe sub-catchment is 
largely driven by agricultural activities, mining and uncontrolled live
stock grazing which have become a cause of concern. These activities 
were reported to disturb the ground which increases the potential rates 
of erosion thus reducing fertility. Results also show that, other land 
covers such as woodlands and grasslands were also affected by soil loss 
due to vegetation clearance as a result of human activities. As the area 
covered by woodlands decreased there was exposure to erosion which 
averaged between 10 and 17 t ha− 1 year− 1. It is clear that, if no mean
ingful efforts are put in place soil loss will surpass the rate of soil for
mation which has negative implications on food security (Yesuph and 
Dagnew, 2019; Dzawanda and Ncube, 2022). This will also negatively 
affect biodiversity in the area a position confirmed by Paul et al., (2019) 
as well as efforts aimed at attaining SDGs for instance 1 and 2 on ending 
poverty and zero hunger respectively. In the Tugwi–Zibagwe 
sub-catchment logging activities are also common hence leading to 
reduced vegetation cover which in the end expose the soil to erosion as 
indicated by the increase in the maximum soil loss values spread across 
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the various land covers. In Tugwi–Zibagwe sub-catchments, construc
tion activities resulted in clearance of ground vegetative cover which 
exposed soil to erosion. This is in response to the growing demand for 
settlement in order to meet the growing demand at the expense of areas 
covered by woodlands and plantation areas which were declining. Set
tlement establishment results in clearance of large tracts of lands which 
results in areas devoid of vegetation (Dzawanda and Ncube, 2022).

The Mann-Kendall test results indicated no statistically significant 
changes in both NDVI) and annual soil loss for both the Shashe and 
Tugwi-Zibagwe sub-catchment. This generally shows that NDVI values 
were declining but not following a statistically significant trend. This 
aligns with findings of Phinzi et al. (2021) who observed that changes in 
NDVI values over time can be used to assess soil loss as was the case and 
generally do not follow a significant trend. Results further show that, 
whilst annual soil loss was generally declining when compared to the 
2016 and 2020 years. The major reasons for this can be attributed to 
various factors such as the establishment of a series of conservation 
strategies. Musasa et al. (2024) opines that soil loss is generally low in 
areas that do not experience excessive cultivation and have controlled 
grazing. These findings offer valuable insights into soil erosion varia
tions, which thus supports sustainable soil management practices and 
informing erosion control strategies. The results of the study also 
contribute to land use planning and policy development aimed at miti
gating soil degradation and enhancing agricultural resilience in rural 
dominated sub-catchments of Zimbabwe.

4.4. Limitations of the study and the need for future research

Despite an attempt to improve the spatial resolution, not all soil 
erosion features have been classified, for example rills, sheet and some 
small gullies have been excluded possibly because their sizes fall below 
the spatial resolution (10m) of the data sets used e.g the Sentinel 2 MSI. 
Within the respective sub-catchments, the spectral reflectivity of soil 
erosion features tends to vary, and in some cases tends to be like non- 
erosion features (for example, bare soil). This therefore creates room 
for the possibility of classifying some soil erosion features as non-erosion 
features. For example, the spectral reflectance of sheet erosion may 
resemble that of bare soil surfaces making it difficult if not impossible to 
spectrally discriminate between the two features. This therefore, calls 
for the need for longitudinal researches that continue to explore ways 
that can be used to improve the quality of assessments so as to enhance 
decision making hence better environmental management.

The study also relies on remotely sensed data and GIS-based 
modelling for soil erosion estimation. This therefore, limited full scale 
field-based validation of erosion risk although not absent as it was 
conducted within a specific period of time. It is also important to note 
that, the Revised Universal Soil Loss Equation (RUSLE) model includes 
several empirical factors (e.g., R, K, LS, C, P) and these were derived 
from secondary data for instance rainfall data from CHIRPS. These as
sumptions may introduce uncertainties which may affect the quality of 
soil erosion assessments. Empirical models are easy to use hence widely 
applied, especially in areas with limited data availability. As such, each 
model suits well depending on the particular context within which it can 
be applied. For instance, without the integration of geospatial tech
niques such as GIS and remote sensing techniques, the model does not 
assess soil erosion in spatial context (Habtu and Jayappa, 2022). This 
clearly shows that on its own the model is not sufficient in soil erosion 
modelling due to issues of complexity, for instance, terrain variables. 
Recently, Phinzi et al. (2021) obtained low accuracies from the RUSLE 
model results as it overlooked the concept of erosion in areas with gentle 
slope in the catchment as gully erosion was largely active. These limi
tations suggest the need for further studies to generate comprehensive 
evidences for proper decisions.

5. Conclusions

The present article fused a combination of robust remote sensing 
methods and RUSLE approach to appreciate soil erosion risk under 
varying LULC circumstances between 2016 and 2023. The findings 
demonstrate that a multi-pronged approach that entails several geo
spatial methods including cloud computing techniques such as GEE is 
important in accurate detailed soil erosion risk modelling. The RF 
classification of Analysis ready Sentinel 2 images successfully mapped 
the LULC clearly depicting the soil erosion hotspots in the Shashe and 
Tugwi –Zibagwe sub-catchments. The area under cultivation has been 
increasing at the expense of other land covers for instance grasslands 
and woodlands in both sub-catchments which exposes the areas to 
varying levels of erosion. Soil loss was considerably high in areas under 
cultivation when compared to other land covers in the respective areas. 
Results show that, the lowest risk of erosion was 15 t ha− 1 year− 1 with 
the highest being 150 t ha− 1 year− 1, for the Shashe sub-catchment. Soil 
erosion risk tends to be highly concerted in the north-eastern parts of the 
Shashe sub-catchment and along drainage networks. Comparatively, the 
Tugwi–Zibagwe had considerable high erosion risk on the central and 
southern parts mainly around agricultural fields in communal areas. In 
the Tugwi–Zibagwe sub-catchments the lowest and risk of erosion was 
11 t ha− 1 year− 1 and the highest over 100 t ha− 1 year− 1. Therefore, the 
increased soil erosion rates resulted in declining soil fertility. The 
inherent impact is reduced productivity yet; agriculture is the main 
livelihood strategy.
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