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Abstract

The acceptance of generalized distributions has significantly improved over the past two
decades. In this paper, we introduce a new generalized distribution: Topp–Leone odd
Weibull flexible-G family of distributions (FoD). The new FoD is a combination of two
FOD; the Topp–Leone-G and odd Weibull-flexible-G families. The proposed FoD possesses
more flexibility compared to the two individual FoD when considered separately. Some
selected statistical properties of this new model are derived. Three special cases from the
proposed family are considered. The new model exhibits symmetry and long or short
tails, and it also addresses various levels of kurtosis. Monte Carlo simulation studies were
conducted to verify the consistency of the maximum likelihood estimators. Two real data
examples were used as illustrations on the flexibility of the new model in comparison
to other competing models. The developed model proved to perform better than all the
selected competing models.

Keywords: Topp–Leone-G distribution; odd Weibull flexible-G distribution; Monte Carlo
simulation

MSC: 62E30; 60E05; 62E15

1. Introduction
1.1. Background

The main objective of distribution theory is the development and application of new
distributions to diverse fields of research. Many distributions and families of distribu-
tions have been developed and received attention from researchers in the fields of sports
science, survival and reliability studies, engineering, economics, insurance, agriculture,
and environmental science, among others. Generalized distributions have become more
acceptable over the last three decades compared to classical distributions. Generalized
distributions often result in extra parameters that cater for either skewness or kurtosis or
both. Some generators do not add extra parameters to existing models but rather transform
the distribution into a new distribution, for example, the half logistic generator, which is a
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sub-model of the exponentiated half logistic generator by Cordeiro et al. [1] and flexible-G
generator by Tahir et al. [2].

One of the most prominent distribution with wider applications in life testing and
reliability studies is the Topp–Leone distribution by Topp and Leone [3]. This distribution
has a bathtub failure rate, which makes it more useful in lifetime analysis. The Topp–Leone
distribution has a limitation whereby it is defined on a bounded interval (0,1). Al-Shomrani
et al. [4] generalized the Topp–Leone distribution and proposed the Topp–Leone-G (TL-
G) FoD using the T-X generator by Alzaatreh et al. [5] with the cumulative distribution
function (cdf): Equations were checked and they are OK

FTL−G(z; b, ν) =
[
1 − G2

(z; ν)
]b

(1)

and probability density function (pdf):

fTL−G(z; b, ν) = 2bg(z; ν)G(z; ν)
[
1 − G2

(z; ν)
]b−1

, (2)

for b > 0, and parent parameter vector ν. The TL-G FoD broke the limitation of bounded-
ness of the domain of the Topp–Leone distribution since it allows the incorporation of any
baseline distribution and thus overcoming this limitation. Several researchers generalized
other distributions using the TL-G FoD; these include Topp–Leone-generated families by
Rezaei et al. [6], the Topp–Leone Odd Log-Logistic family by Brito et al. [7], Topp–Leone
Burr-XII distribution by Reyad and Othman [8], the transmuted Topp–Leone-G by Yousof
et al. [9], the exponentiated generalized Topp Leone-G family by Reyad et al. [10], and the
DUS Topp–Leone-G Family by Ekemezie et al. [11], among others. These generalizations
possess some desirable properties and have proven to be of utility in data modelling.

Tahir et al. [2] developed the new flexible generalized (F-G) FoD whose cdf and pdf
are given by

FF−G(z; ν) = 1 − G(z; ν)G(z;ν) (3)

and pdf

fF−G(z; ν) = g(z; ν)G(z; ν)G(z;ν)
[

G(z; ν)

G(z; ν)
− log G(z; ν)

]
, (4)

for a parent parameter vector ν. The proposed distribution does not come from the
generalization of any parent distribution, just as how the exponentiated-generalized-G
by Cordeiro et al. [12], Lehmann alternative types 1 and 2 by Gupta et al. [13], Marshall–
Olkin-G by Marshall and Olkin [14], and transmuted-G by Shaw and Buckley [15] were
developed. Models generated from the F-G FoD do not have identifiability problems
since the generator does not add any extra parameter. Ferreira and Cordeiro [16] used the
F-G generator to further generalize the generalized gamma distribution, and the resultant
model demonstrated more flexibility than the parent model.

Furthermore, Cordeiro et al. [17] developed a new odd Weibull flexible-G (WF-G)
FoD using the F-G generator. Their new distribution generalizes the Weibull-G FoD by
Bourguignon et al. [18]. The cdf and pdf of the WF-G FoD are given by

FWF−G(z; α, ν) = 1 − exp
{
−
[

G(z; ν)−G(z;ν) − 1
]α}

(5)
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and

fWF−G(z; α, ν) = αg(z; ν)G(z; ν)−G(z;ν)
[

G(z; ν)

G(z; ν)
− log G(z; ν)

]
×

[
G(z; ν)−G(z;ν) − 1

]α−1
exp

{
−
[

G(z; ν)−G(z;ν) − 1
]α}

, (6)

for α > 0, and parent parameter vector ν. The WF-G distribution was applied to
heavily skewed datasets and the distribution has some interesting features in the pdf,
like bimodality.

1.2. Motivational Example: Failure Time Data

The dataset used is from engineering research pertaining to appliance lifespan. It
represents time to failure for 60 electrical appliances (see Lawless [19] for details). This
dataset is used in engineering applications to analyze the lifespan of appliances. Descriptive
statistics are shown in Table 1. Figure 1 represents the histogram and box-plot for this
dataset. The plots in Figure 1 confirms that the data are skewed to the right and the box-plot
detects some outlying values. From the exploratory analysis results, we hypothesize the
Topp–Leone odd Weibull flexible-G (TL-OWF-G) as a suitable candidate to model this
dataset. The proposed model adds an extra parameter to the WF-G FoD, which enhances
modeling capabilities of the proposed distribution. The resultant models when the baseline
distributions are specified are not overparameterized and demonstrated more flexibility
in data modeling compared to other models with more parameters, as demonstrated in
Section 6.

Table 1. Descriptive statistics for failure time data.

Minimum Maximum Mean Median SD Skewness Kurtosis

14.0 9701.0 2114.8 1527.5 1925.15 1.30 2.21

Figure 1. Histogram and box-plot for failure time data.

The remainder of this paper is arranged as follows: Section 2 introduces the new
model and some statistical properties. We present in Section 3 three special models from
the new FoD. Maximum Likelihood estimation (MLE) and Monte Carlo simulation study
are presented in Section 4. Two real data applications are presented in Section 6 followed
by conclusions in Section 7.
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2. The New Family and Properties
We present the new Topp–Leone odd Weibull flexible-G (TL-OWF-G) FoD and some

statistical properties in this section. In this paper, we add an extra parameter to the WF-G
distribution using the TL-G generator. The motivation is to improve on the flexibility of
the WF-G and the TL-G families as shown in Section 6, where the new distribution fits the
selected datasets better than the prior families and other competing models.

2.1. Topp–Leone Odd Weibull Flexible-G Family

If we consider Equation (5) as the baseline distribution in Equation (3), we obtain the
Topp–Leone odd Weibull flexible-G (TL-OWF-G), whose cdf is

FTL−OWF−G(z; b, α, ν) =
[
1 − exp

{
−2
[

G(z; ν)−G(z;ν) − 1
]α}]b

(7)

and pdf

fTL−OWF−G(z; b, α, ν) = 2αbg(z; ν)G(z; ν)−G(z;ν)
[

G(z; ν)

G(z; ν)
− log G(z; ν)

]
×

[
G(z; ν)−G(z;ν) − 1

]α−1
exp

{
−2
[

G(z; ν)−G(z;ν) − 1
]α}

×
[
1 − exp

{
−2
[

G(z; ν)−G(z;ν) − 1
]α}]b−1

, (8)

for b, α > 0, and parent parameter vector ν.

2.2. Properties

The quantile function of the TL-OWF-G FoD is defined as F−1(u) = Q(u) for
0 ≤ u ≤ 1. We invert Equation (7) using the following procedure:

u =
[
1 − exp

{
−2
[

G(z; ν)−G(z;ν) − 1
]α}]b

1 − u1/b = exp
{
−2
[

G(z; ν)−G(z;ν) − 1
]α}

ln(1 − u1/b) = −2
[

G(z; ν)−G(z;ν) − 1
]α

[
− ln(1 − u1/b)

2

]1/α

+ 1 = G(z; ν)−G(z;ν) (9)

(i) Set s =
[
− ln(1−u1/b)

2

]1/α
+ 1.

(ii) Solve for s, using the Newton Raphson algorithm, the non-linear equation
G(z; ν)−G(z;ν) = s.

We present in Table 2 quantile values when G(z; ν) in Equation (9) is the
Weibull distribution.

To obtain the linear representation of the new FoD, we will first express Equation (7)
as a series expansion and then differentiate the result to obtain the linear representation of
the pdf. Using the generalized binomial expansion and the result e−x = ∑∞

q=0
(−x)q

q! , we get

F(z; b, α, ν) =
∞

∑
p,q=0

(−1)p(−2p)q

q!

(
p
b

)[
G(z; ν)−G(z;ν) − 1

]αq
.



Mathematics 2025, 13, 2866 5 of 18

Table 2. Quantile values for TL-OWF-W distribution.

u (1.5,1.5,0.1) (0.5,1,0.5) (1.5,0.5,1.5) (0.5,1.5,0.9) (1.1,1.1,0.3)

0.1 0.0018 0.0028 0.316 0.0989 0.0194
0.2 0.0114 0.0131 0.436 0.1844 0.0576
0.3 0.0367 0.0343 0.5286 0.2761 0.1136
0.4 0.0909 0.072 0.6086 0.3789 0.1909
0.5 0.1977 0.1355 0.682 0.4978 0.2958
0.6 0.4044 0.2411 0.7528 0.6399 0.4397
0.7 0.8185 0.4202 0.8246 0.8173 0.6449
0.8 1.7394 0.7454 0.9028 1.0557 0.9625
0.9 4.4318 1.4521 1.0006 1.4306 1.5591

For 0 ≤ z < 1, we state the convergent power series (PS) defined as

ρ(z) = (1 − z)−z − 1 = z2
∞

∑
j=0

ϕjzj,

where ϕ0 = 1, ϕ1 = 1
2 , ϕ2 = 5

6 , ϕ3 = 3
4 , etc. Using a PS raised to a positive power (Apostol,

1974, p. 239 [20]), we have

[
G(z; ν)−G(z;ν) − 1

]αq
=

(
G2(z; ν)

∞

∑
j=0

ϕjGj(z; ν)

)αq

= G2αq(z; ν)
∞

∑
j=0

β j(αq)Gj(z; ν),

where

β j = βαq =

{
1, j = 0
1
j ∑

j−1
m=0[jαq − m(αq + 1)]ϕmβ j−m, j > 0

yields

F(z; b, α, ν) =
∞

∑
j,p,q=0

(−1)p(−2p)q

q!

(
p
b

)
βαqG2αq+j(z; ν). (10)

Through differentiation of Equation (10), we get

f (z; b, α, ν) =
∞

∑
j,p,q=0

(−1)p(−2p)q

q!

(
p
b

)
βαq(2αq + j)g(z; ν)G2αq+j−1(z; ν)

=
∞

∑
j,p,q=0

πj,p,qg2αq+j(z; ν), (11)

where

πj,p,q =
(−1)p(−2p)q

q!(2αq + j)

(
p
b

)
βαq (12)

and g2αq+j(z; ν) = (2αq + j)g(z; ν)G2αq+j−1(z; ν) is an exponentiated-G (Exp-G) with pa-
rameter (2αq + j). Many researchers have focused on the properties of the Exp-G and they
are well documented. Equation (11) allows us to obtain the properties of the TL-OWF-
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G family of distributions. Let X2αq+j ∼ Exp − G(2αq + j; ν), then the raw moments of
TL-OWF-G FoD are derived from Equation (11) as

µ′ = E(Zn) =
∞

∑
j,p,q=0

πj,p,qE(Xn
2αq+j). (13)

The incomplete moment of Z is derived in the same manner. The moment-generating
function (mgf) has the form

MZ(t) =
∞

∑
j,p,q=0

πj,p,q M2αq+j(t), (14)

where M2αq+j(t) is the mgf of Exp − G(2αq + j; ν). Rényi entropy of the TL-OWF-G FoD is
derived directly from Equation (11) as follows:

IR(ω) = (1 − ω)−1 log
(∫ ∞

0
f ω(z, b, ν)dx

)
= (1 − ω)−1 log

(∫ ∞

0

{
∞

∑
j,p,q=0

πj,p,qg2αq+j(z; ν)

}ω

dx

)
. (15)

3. Special Models
We provide three special models of the TL-OWF-G FoD when the baseline distributions

are Weibull, log-logistic, and Kumaraswamy. The new special models in this section
are Topp–Leone Odd Weibull flexible-Weibull (TL-OWF-W), Topp–Leone Odd Weibull
flexible-log-logistic (TL-OWF-LLoG), and Topp–Leone Odd Weibull flexible-Kumaraswamy
(TL-OWF-Kum). We also provide the pdf and hazard rate function (hrf) plots for the
special models.

3.1. TL-OWF-W Distribution

If the baseline is Weibull with cdf G(z; θ) = 1 − e−zθ
and pdf g(z; θ) = θzθ−1e−zθ

, for
z > 0 and θ > 0, we obtain a new distribution called TL-OWF-W with the cdf

F(z; b, α, θ) =

[
1 − exp

{
−2
[
[e−zθ

](−1+e−zθ
) − 1

]α}]b

(16)

and pdf

f (z; b, α, θ) = 2αbθzθ−1e−zθ
[e−zθ

](−1+e−zθ
)

[
1 − e−zθ

[e−zθ ]
− log[e−zθ

]

]

×
[
[e−zθ

](−1+e−zθ
) − 1

]α−1
exp

{
−2
[
[e−zθ

](−1+e−zθ
) − 1

]α}
×

[
1 − exp

{
−2
[
[e−zθ

](−1+e−zθ
) − 1

]α}]b−1

, (17)

for b, α, θ > 0.
Figure 2 represents the pdf and hrf plots for the TL-OWF-W distribution. The pdf

exhibits left- and right-skewed, almost symmetric, and reverse-J shapes. Graphs of hrf
display monotonic and non-monotonic geometry.
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Figure 2. Graphs of the pdfs and hrfs for the TL-OWF-W distribution.

3.2. TL-OWF-LLoG Distribution

If the parent distribution is log-logistic with cdf G(z; c) = 1 − (1 + zc)−1 and pdf
g(z; c) = czc−1(1 + zc)−2, for z > 0 and c > 0, we obtain the TL-OWF-LLoG distribution
with cdf

F(z; b, α, c) =
[
1 − exp

{
−2
[
[(1 + zc)−1](−1+(1+zc)−1) − 1

]α}]b
(18)

and pdf

f (z; b, α, c) = 2αbczc−1(1 + zc)−2[(1 + zc)−1](−1+(1+zc)−1)

×
[

1 − (1 + zc)−1

[(1 + zc)−1]
− log[(1 + zc)−1]

]
×

[
[(1 + zc)−1](−1+(1+zc)−1) − 1

]α−1

× exp
{
−2
[
[(1 + zc)−1](−1+(1+zc)−1) − 1

]α}
×

[
1 − exp

{
−2
[
[(1 + zc)−1](−1+(1+zc)−1) − 1

]α}]b−1
, (19)

for b, α, c > 0.
Graphs of the pdf in Figure 3 show different shapes, including left-skewed, reverse-J,

and unimodal shapes. The hrf graphs display monotonic and non-monotonic shapes.

Figure 3. Graphs of the pdfs and hrfs for the TL-OWF-LLoG distribution.
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3.3. TL-OWF-Kum Distribution

If the parent distribution is Kumaraswamy with cdf G(z; δ, β) = 1 − (1 − zδ)β and
pdf g(z; δ, β) = δβxδ−1(1 − zδ)β−1, for z > 0 and c > 0, we obtain the TL-OWF-Kum
distribution with cdf

F(z; b, α, δ, β) =
[
1 − exp

{
−2
[
[(1 − zδ)β](−1+(1−zδ)β) − 1

]α}]b
(20)

and pdf

f (z; b, α, δ, β) = 2αbβδxδ−1(1 − zδ)β−1[(1 − zδ)β](−1+(1−zδ)β)

× [(1 − zδ)β](−1+(1−zδ)β)

[
1 − (1 − zδ)β

[(1 − zδ)β]
− log[(1 − zδ)β]

]
×

[
[(1 − zδ)β](−1+(1−zδ)β) − 1

]α−1

× exp
{
−2
[
[(1 − zδ)β](−1+(1−zδ)β) − 1

]α}
×

[
1 − exp

{
−2
[
[(1 − zδ)β](−1+(1−zδ)β) − 1

]α}]b−1
, (21)

for b, α, δ, β > 0.
Graphs of the pdf in Figure 4 show different shapes, including left-skewed and

unimodal shapes. The hrf graphs display monotonic and non-monotonic shapes.

Figure 4. Graphs of the pdfs and hrfs for the TL-OWF-Kum distribution.

4. Maximum Likelihood Estimation and Simulation Study
Maximum Likelihood Estimation

Let z1, ..., zn be a set of observations from the TL-OWF-G distribution given by
Equation (7). The total log-likelihood function for Θ = (b, α, ν)T is given by

ℓ = ℓ(Θ) =
n

∑
i=1

log(2αb) +
n

∑
i=1

log g(zi; ν)−
n

∑
i=1

[−G(zi; ν) log G(zi; ν)]

+
n

∑
i=1

log
[

G(zi; ν)

G(zi; ν)
− log G(zi; ν)

]
+ (α − 1)

n

∑
i=1

log
[

G(zi; ν)−G(zi ;ν) − 1
]

+ (b − 1)
n

∑
i=1

log
[
1 − exp

{
−2
[

G(zi; ν)−G(zi ;ν) − 1
]α}]

− 2
n

∑
i=1

[
G(zi; ν)−G(zi ;ν) − 1

]α
. (22)
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The MLE estimates can be obtained by maximizing Equation (22) using the optim
function in R software Version 4.1.1 and maxLik function in maxLik library (Henningsen
and Toomet [21]).

5. Simulation Study
We conducted Monte Carlo simulation studies to evaluate the performance of the

maximum likelihood estimators. The special model TL-OWF-W was considered for the
simulation studies. The simulation studies were carried out for different sample sizes
(n = 25, 50, 100, 200 and 400) for N = 3000. We computed the mean estimates, root mean
square errors (RMSEs), and average bias (Abias). The maxLik function in R software and
the BFGS method were utilized. RMSE and Abias for a given parameter were estimated

using the formulae RMSE =

√
∑N

i=1(b̂−b)2

N and Abias = ∑N
i=1 b̂
N . Simulation study results are

presented in Tables 3 and 4. The results show that the estimators are consistent since RMSE
and Abias decay with increasing sample size for all the selected parameter values.

Table 3. Simulation results for TL-OWF-W distribution.

(1,1,1) (1,1,0.5)
Paramater n Mean RMSE Abias Mean RMSE Abias

b 25 2.4695 4.2455 1.4695 2.3462 3.8320 1.3462
50 1.9971 2.9784 0.9971 1.9541 3.2334 0.9541
100 1.6885 2.1400 0.6885 1.6746 2.0814 0.6746
200 1.4653 1.5408 0.4653 1.5216 1.6470 0.5216
400 1.2217 0.9878 0.2217 1.1337 0.9359 0.1337

α 25 1.0660 0.6004 0.0660 1.0673 0.5994 0.0673
50 1.0196 0.4422 0.0196 1.0158 0.4286 0.0158

100 0.9875 0.3435 −0.0125 0.9871 0.3437 −0.0129
200 0.9904 0.2747 −0.0096 0.9834 0.2846 −0.0166
400 1.0040 0.2101 0.0040 1.0232 0.2112 0.0232

θ 25 2.3467 2.5729 1.3467 1.2189 1.3567 0.7189
50 1.8462 1.7927 0.8462 0.9978 0.9888 0.4978

100 1.6409 1.4990 0.6409 0.8287 0.7496 0.3287
200 1.4361 1.1494 0.4361 0.7287 0.5936 0.2287
400 1.3338 0.9087 0.3338 0.7067 0.4769 0.2067

(0.5,0.5,0.9) (0.5,0.5,1.1)
Paramater n Mean RMSE Abias Mean RMSE Abias

b 25 1.3910 2.4397 0.8910 1.6203 2.5932 1.1203
50 1.0187 1.5717 0.5187 1.2257 1.8290 0.7257
100 0.7861 0.9416 0.2861 1.1348 1.4951 0.6348
200 0.7813 0.9283 0.2813 0.8345 0.8907 0.3345
400 0.5476 0.2822 0.0476 0.6208 0.3821 0.1208

α 25 0.5058 0.3051 0.0058 0.5076 0.3271 0.0676
50 0.5279 0.2052 0.0279 0.4870 0.1995 −0.0613

100 0.5213 0.1546 0.0213 0.4839 0.1511 −0.0161
200 0.5328 0.1202 0.0328 0.5073 0.1053 0.0073
400 0.5331 0.0756 0.0331 0.5210 0.0753 0.0021

θ 25 1.1957 0.8036 0.2957 1.3701 0.9775 0.2701
50 1.0191 0.5815 0.1191 1.1514 0.6808 0.0951

100 1.0054 0.5003 0.1054 1.0083 0.5731 −0.0917
200 0.9353 0.4186 0.0353 1.0232 0.4662 −0.0768
400 0.9755 0.3743 0.0755 1.0700 0.3738 −0.0300
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Table 4. Simulation results for TL-OWF-W distribution.

(0.5,0.9,0.5) (0.5,0.9,0.9)
Paramater n Mean RMSE Abias Mean RMSE Abias

b 25 1.4583 3.1130 0.9583 1.8625 3.4889 1.3625
50 0.6873 1.6004 0.1873 1.3102 2.3183 0.8102

100 0.5552 1.2547 0.0552 1.0050 1.4338 0.5050
200 0.4053 0.6547 −0.0547 0.8468 1.0522 0.3468
400 0.4502 0.0609 −0.0498 0.6271 0.5429 0.1271

α 25 0.9938 0.5332 0.1938 0.9187 0.5132 0.0387
50 1.0051 0.3607 0.1051 0.8998 0.3524 −0.0302

100 0.9871 0.2734 0.0871 0.8771 0.2595 −0.0229
200 1.0724 0.2354 0.0724 0.8791 0.2038 −0.0209
400 1.0102 0.1429 0.0102 0.9040 0.1382 0.0040

θ 25 0.8969 0.7228 0.3969 1.3258 1.1247 0.4258
50 0.8401 0.5558 0.3501 1.1396 0.7960 0.2396

100 0.8908 0.5488 0.3490 1.0318 0.6472 0.1318
200 0.8486 0.4788 0.3486 0.9847 0.5393 0.0847
400 0.5125 0.0335 0.0125 0.9971 0.4287 0.0971

(0.5,0.5,1) (0.5,1.0,0.9)
Paramater n Mean RMSE Abias Mean RMSE Abias

b 25 1.4079 2.2828 0.9079 1.6534 3.1737 1.1534
50 1.1854 1.8470 0.6854 1.1606 2.0469 0.6606

100 0.9558 1.2172 0.4558 0.9854 1.4278 0.4854
200 0.8059 0.8661 0.3059 0.8542 1.1024 0.3542
400 0.5933 0.3817 0.0933 0.6235 0.5690 0.1235

α 25 0.4870 0.3185 −0.0130 1.0623 0.5402 0.0623
50 0.5052 0.2224 0.0052 1.0108 0.3781 0.0108

100 0.5045 0.1498 0.0045 0.9812 0.2879 −0.0107
200 0.5163 0.1146 0.0036 0.9792 0.2314 −0.0106
400 0.5316 0.0818 0.0032 1.0063 0.1574 0.0063

θ 25 1.3113 0.8669 0.3113 1.3852 1.1802 0.4852
50 1.1082 0.6429 0.1082 1.2111 0.8577 0.3111

100 1.0053 0.5226 0.0053 1.0851 0.6876 0.1851
200 0.9493 0.4174 −0.0507 1.0180 0.5705 0.1180
400 1.0247 0.3684 0.0247 1.0240 0.4579 0.1240

6. Applications
In this section, we demonstrate the importance of the new model using a special model,

TL-OWF-W. We apply the model to two datasets. We used the following goodness-of-fit
(GoF) statistics to assess model performance: Bayesian Information Criterion (BIC), Akaike
Information Criterion (AIC), -2loglikelihood statistic (−2 log Ł), Cramér–von Mises (W∗),
Kolmogorov–Smirnov (K-S), and Anderson–Darling Statistics (A∗). The p-value for the K-S
statistic was also calculated. The model with smaller values of all GoF statistics is selected
as the best model. We also provide graphical representations to demonstrate the GoF. The
plots considered are density plots, probability–probability (PP) plots, empirical cumulative
distribution function (ECDF) plots, Kaplan–Meier (K-M) survival plots, total time on test
(TTT) plots, profile plots, and hrf plots.

The following competing models were used for comparison: exponentiated odd
Weibull–Topp–Leone-log-logistic (EOW-TL-LLoG) distribution (Chamunorwa et al. [22]),
Topp–Leone–Weibull (TL-W) distribution (Tuoyo et al. [23]), cosine Topp–Leone–Weibull
(CosTL-W) distribution (Nanga et al. [24]), the exponentiated Lindley odd log-logistic
Weibull (EL-OLL-W) distribution (Korkmarz et al. [25]), type I heavy-tailed-Weibull (TIHT-
W) distribution (Zhao, [26]), odd Burr III-W (OBIII-W) distribution (Alizadeh et al. [27]),
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and the Topp–Leone exponentiated-half logistic Gompertz Weibull (TL-EHL-Gom-W)
distribution (Charumbira et al. [28]).

6.1. Failure Time Data

The dataset consists of the number of cycles to failure for a group of 60 electrical
appliances in a life test. The dataset was discussed by Lawless [19]. The dataset is provided
in Appendix A.

The estimated variance–covariance matrix for failure time data is3.2140 × 10−3 1.3473 × 10−5 2.1027 × 10−6

1.3473 × 10−5 5.6392 × 10−8 8.8007 × 10−9

2.1027 × 10−6 8.8007 × 10−9 8.9804 × 10−9

.

The asymptotic 95% confidence intervals are b ∈ [0.4045± 0.1112], α ∈ [1.2249× 102 ±
0.0005], and θ ∈ [6.7739 × 10−3 ± 0.0002].

Results from Table 5 show that TL-OWF-W outcompete the selected models because it
has lower values of the GoF statistics and the highest p-value.

Figure 5 represents log-likelihood profile plots for the estimates b, α, and θ. The plots
demonstrate that the parameters are identifiable for failure time data. Figure 6 shows that
the fitted density plot of our proposed model aligns closely with the histogram of the data,
and the PP plot follows closely to the empirical line for failure time data. This indicates
that our model is a good fit.

Figure 5. Profile log-likelihood for b, α, and θ for failure time data.

Figure 6. Fitted pdf and pp plots for failure time dataset.
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Table 5. Failure time data: Estimates and GoF statistics.

Estimates Statistics

Distribution b α θ −2log(L) AIC CAIC BIC W∗ A∗ K−S p-Value

TL-OWF-W 0.4045 1.2249 × 102 6.7739 × 10−3 1035.8270 1041.8270 1042.2550 1048.1100 0.0220 0.2022 0.048 0.9974
(5.6736 × 10−2) (2.3747 × 10−4) (9.4765 × 10−5)

b α
TL-W 1.1951 × 102 0.1366 1064.3390 1068.3390 1068.5490 1072.5270 0.4770 2.7835 0.1735 0.0476

(25.0670) (6.7652 × 10−3)

b θ
CosTL-W 59.5913 0.1319 1065.8710 1069.8710 1070.0810 1074.0600 0.4989 2.9015 0.1716 0.0516

(12.0503) (0.0068)

α θ γ
TIHT-W 0.9061 0.6968 0.0017 1038.2230 1044.2230 1044.6510 1050.5060 0.0604 0.4467 0.0693 0.9163

(0.1364) (0.3324) (0.0026)

β k α
OBIII-W 0.0481 6.0431 0.518921 1043.7600 1049.7600 1050.1880 1056.043 0.0755 0.5799 0.0681 0.9255

( 0.0404) (1.5194) (0.0969)

α b β c
EOW-TL-LLoG 0.2037 46.3545 4.2572 0.2313 1036.1490 1044.1490 1044.8760 1052.526 0.0567 0.3958 0.0893 0.6918

(0.0798) (0.0194) (1.3416) (0.0051)

b γ α β
TL-EHL-Gom-W 3.0060×104 0.3589 3.8490 × 10−2 9.4391×10−2 1062.0970 1070.0970 1070.8240 1078.4740 0.4452 2.6160 0.1706 0.0537

(6.0992 × 10−8) (0.3353) (9.6480 × 10−3) (2.9173 × 10−2)

β λ θ γ
EL-OLL-W 5.3598 1.0072 × 10−4 6.0844 0.8941 1037.8680 1045.8680 1046.5950 1054.2450 0.0563 0.4198 0.0680 0.9262

(1.4388 × 10−3) (1.7684 × 10−5) (1.2674 × 10−3) (9.6488 × 10−2)
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Figure 7 displays K-M survival curves and the ECDF for failure time data. Both graphs
show that the TL-OWF-W fit the dataset well. TTT-scaled plot in Figure 8 suggests a bathtub
hrf shape, which is correctly picked by the TL-OWF-W model.

Figure 7. K-M survival and ECDF plots for failure time dataset.

Figure 8. Fitted TTT-scaled plot and hrf plots for failure time data.

6.2. COVID-19 Dataset

The dataset represents newly reported cases of COVID-19 in Italy for the period 13
June–12 August 2021 (see Appendix A for the observations). The estimated variance–
covariance matrix for cycles to Italy’s COVID-19 data is239.4175 0.8097 −1.4508

0.8097 0.0038 −0.0072
−1.4508 −0.0072 0.0138

.

The asymptotic 95% confidence intervals are b ∈ [52.2406 ± 30.3273], α ∈ [0.1358 ±
0.1215], and θ ∈ [0.5772 ± 0.2305].

According to the GoF statistics presented in Table 6, the TL-OWF-W distribution
outperforms the competing models. Therefore, we conclude that TL-OWF-W is the best-
fitting model for Italy’s COVID-19 data.
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Table 6. COVID-19 dataset: Parameter estimates and GoF statistics.

Estimates Statistics

Distribution b α θ −2log(L) AIC CAIC BIC W∗ A∗ K−S p-Value

TL-OWF-W 52.2406 0.1358 0.5772 468.9215 474.9215 475.3425 481.2541 0.0433 0.2629 0.0757 0.8757
(15.4731) (0.0620) (0.1176)

b α
TL-W 1.1951 × 1002 0.1366 1064.3390 1068.3390 1068.5490 1072.5270 0.4770 2.7835 0.1735 0.04762

(25.0670) (6.7652 × 10−03)

b θ
CosTL-W 64.4954 0.3190 480.2325 484.2325 484.4394 488.4543 0.2136 1.2269 0.1362 0.2075

(13.3887) (0.0163)

α θ γ
TIHT-W 1.8370 0.0025 1.0819 469.0900 475.0900 475.5111 481.4227 2.0642 11.1937 0.1312 0.2449

(0.1971) (0.0022) (0.5944)

β k α
OBIII-W 0.2172 9.8007 0.8269 469.4335 475.4335 475.8545 481.7661 0.042 0.2450 0.0837 0.7867

(0.1438) (3.75) (0.1680)

α b β c
EOW-TL-LLoG 1.2889 24.5939 1.2906 0.5252 469.4652 477.4652 478.1795 485.9087 0.0591 0.3401 0.0989 0.5895

(0.7040) (12.4521) (0.4312) (0.0914)

b γ α β
TL-EHL-Gom-W 3.5953 × 104 0.3577 3.6141 × 10−2 0.2268 477.4705 485.4705 486.1847 493.9140 0.1766 1.0081 0.1345 0.2196

(3.0615 × 10−9) (0.3809) (1.0098 × 10−2) (7.9494 × 10−2)

β λ θ γ
EL-OLL-W 1.7323 × 10−8 2.4672 × 10−2 2.4042 1.9037 470.5295 478.5295 479.2438 486.973 0.0526 0.3738 0.0886 0.724

(0.70660) (4.1880 × 10−3) (2.2550 × 10−5) (0.18324)
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The profile plots in Figure 9 show that the parameters reached their global maximum
for Italy’s COVID-19 data.

Figure 9. Profile log-likelihood for b, α, and θ for COVID-19 dataset.

To augment the results in Table 6, we provide fitted density plots and PP plots in
Figure 10. The plots demonstrate that the TL-OWF-W model offers a superior fit compared
to the other models considered. Figure 11 further supports the flexibility of the TL-OWF-W
model in data fitting. The dataset exhibits an increasing followed by decreasing hrf, which
is accurately picked by the new model as shown in Figure 12.

Figure 10. Fitted densities and PP plots for COVID-19 dataset.

Figure 11. Fitted K-M survival and ECDF plots for COVID-19 dataset.
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Figure 12. Fitted TTT-scaled plot and hrf plot for COVID-19 dataset.

7. Conclusions
We developed the Topp–Leone odd Weibull flexible-G FoD and its statistical properties.

The estimators of the parameters were assessed for consistency via Monte Carlo simulation
studies. The new distribution outperformed other well-established models as demonstrated
through applications in two real datasets. The model has a limitation because of the absence
of an analytical solution to the quantile function, which is important in the calculation of
other statistical measures like skewness and kurtosis.
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Appendix A
Appendix A.1. Datasets

Appendix A.1.1. Failure Time Data

The data are: 14, 34, 59, 61, 69, 80, 123, 142, 165, 210, 381, 464, 479, 556, 574, 839, 917,
969, 991, 1064, 1088, 1091, 1174, 1270, 1275, 1355, 1397, 1477, 1578, 1649, 702, 1893, 1932,
2001, 2161, 2292, 2326, 2337, 2628, 2785, 2811, 2886, 2993, 3122, 3248, 3715, 3790, 3857, 3912,
4100, 410, 4116, 4315, 4510, 4584, 5267, 5299, 5583, 6065, 9701.

Appendix A.1.2. Italy’s COVID-19 Data

The data are: 52, 26, 36, 63, 52, 37, 35, 28, 17, 21, 31, 30, 10, 56, 40, 14, 28, 42, 24, 21, 28,
22, 12, 31, 24, 14, 13, 25, 12, 7, 13, 20, 23, 9, 11, 13, 3, 7, 10, 21, 15, 17, 5, 7, 22, 24, 15, 19, 18, 16,
5, 20, 27, 21, 27, 24, 22, 11, 22, 31, 31.
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