
Downloaded fr
by guest
on 01 August 2
Polypyrrole-based adsorbents for Cr(VI) ions remediation from aqueous solution:

a review

Marko Chigondoa,*, Benias Nyamundaa, Munashe Maposaa and Fidelis Chigondob

a Department of Chemical and Processing Engineering, Manicaland State University of Applied Sciences, Fern Hill Campus, P. Bag 7001, Mutare, Zimbabwe
b Department of Chemical Sciences, Midlands State University, P. Bag 9055, Gweru, Zimbabwe
*Corresponding author. E-mail: marko.chigondo@staff.msuas.ac.zw, chigozma@gmail.com

© 2022 The Authors Water Science & Technology Vol 85 No 5, 1600 doi: 10.2166/wst.2022.050
ABSTRACT

Anthropogenic activities are principally responsible for the manifestation of toxic and carcinogenic hexavalent chromium (Cr(VI)) triggering

water pollution that threatens the environment and human health. The World Health Organisation (WHO) restricts Cr(VI) ion concentration

to 0.1 and 0.05 mg/L in inland surface water and drinking water, respectively. The available technologies for Cr(VI) ion removal from

water were highlighted with an emphasis on the adsorption technology. Furthermore, the characteristics of several polypyrrole-based adsor-

bents were scrutinized including amino-containing compounds, biosorbents, graphene/graphene oxide, clay materials and many other

additives with reported effective Cr(VI) ion uptake. This efficiency in Cr(VI) ions adsorption is attributed to enhanced redox properties,

increased number of functional groups as well as the synergistic behaviour of the materials making up the composites. The Langmuir iso-

therm best described the adsorption processes with maximum adsorption capacities ranging from 3.40–961.50 mg/g. The regeneration of

Cr(VI) ion-laden adsorbents was studied. Ion exchange, electrostatic attractions, complexation, chelation reactions with protonated sites

and reduction were the mechanisms of adsorption. Nevertheless, there are limited details on comprehensive adsorbent regeneration studies

to prolong robustness in adsorption–desorption cycles and utilization of the Cr(VI) ion-laden adsorbent in other areas of research to limit the

threat of secondary pollution.
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1. INTRODUCTION

Heavy industrialisation and technological advancement has culminated in the discharge of large volumes of heavy metal ions
including hexavalent chromium (Cr(VI)) (Rajeev et al. 2019; Ahmad et al. 2021). The major sources of Cr(VI) are anthropo-
genic, besides some natural sources with the former contributing to 70% of the Cr(VI) in water (Zhitkovich 2011). This review

focuses on the main sources of Cr(VI) ions and their toxic effects, as well as remediation using adsorption performance of
hybrid polypyrrole-based adsorbents. Several adsorbents have been documented for Cr(VI) ion removal. However, some chal-
lenges have been encountered including tedious and expensive methods of preparation, generation of additional solid wastes,

low adsorption capacities owing to the low specific surface areas and the unavailability of active functional groups (Dinker
and Kulkarni 2015; Liu et al. 2018a; Hato et al. 2019; Du et al. 2020; Li et al. 2020). It is worth reviewing polypyrrole (PPy)-
based adsorbents because of their unique and enhanced properties. PPy has shown great prospects in adsorption application

due to its reputable environmental stability, extraordinary conductance, desirable redox properties and easiness of processing
(Das and Prusty 2012; Maity et al. 2019). Moreover, it is inexpensive, easy to synthesize, eco-friendly and has abundant amine
groups which facilitate adsorption and chelation of various organic and inorganic groups. Cationic nitrogen atoms on the PPy

moiety act as adsorption sites for heavy metal ions through hydrogen bonding or electrostatic attraction (Mahmud et al. 2015;
Hato et al. 2019; Maity et al. 2019). Consequently, the removal of Cr(VI) ions using PPy has been further enhanced by its easy
acid-base doping-dedoping process, incredible stability in the environment and reversibility, exhibiting high adsorption
capacities (Mahmud et al. 2015; Hato et al. 2019). Cr(VI) ions can be oxidatively reduced to Cr(III) by PPy synthesized

through chemical polymerization using ammonium peroxydisulphate (APS) oxidant under acidic conditions. Great strides
have been made in the synthesis of PPy in the presence of various dopants, additives and a second component to improve
the adsorption efficiency. Conditions used to synthesize PPy determine the structural texture and features of the PPy materials

such as surface area, porosity and the availability of binding sites (Das and Prusty 2012; Hato et al. 2019).
Additionally, the recovery of PPy solid adsorbent from the solution after Cr(VI) ion adsorption has posed difficulties (Jiang

et al. 2018). Henceforth, coating PPy on other substrate materials such as cellulose, biomass, carbon materials, mesoporous

materials, metals, and metal oxides among others in the synthesis of composite adsorbents is one of the strategies used to
improve the cycle, adsorption efficiency and reusability. This surface modification is imperative in the preparation stage as
it leads to the exploitation and application of the organic and inorganic groups, polymeric compounds, biological materials

and ionic liquids in functionalization on the PPy materials. These can work as oppositely charged moieties which interact
with Cr(VI) ions by electrostatic attraction.

While many adsorbents have been documented for Cr(VI) ion removal, it is worthy discussing PPy-based adsorbents. PPy-
based adsorbents specifically for the removal of toxic Cr(VI) ions have not been reviewed in the published literature. So far,

attempts have been made to deal with a variety of pollutants (Mahmud et al. 2015; Das et al. 2019) and general polymer-based
magnetic nanocomposites for Cr(VI) ion removal (Hato et al. 2019). Thus, there is ample scope to review PPy-based adsor-
bents for Cr(VI) ion removal judging by the ever-increasing studies on PPy-based adsorbents for Cr(VI) ion removal.

Furthermore, the above unique characteristics of these adsorbents make their review novel. This review gives the current lit-
erature on the adsorption of Cr(VI) ions from aqueous solution using various PPy-based adsorbents. Different pyrrole
oxidation polymerization processes can produce both simple PPy and PPy-based adsorbents such as PPy-modified mats

and membranes (Zhan et al. 2018a, 2018b), PPy-bio-adsorbents (Alsaiari et al. 2021), PPy-magnetic material (Chigondo
et al. 2019), PPy-amino material (Kera et al. 2017), PPy-carbon material (Setshedi et al. 2015), PPy-modified clay composites
(Ballav et al. 2014a, 2014b) and PPy-inorganic hybrid composites (Alzahrani et al. 2021). These materials exhibit potential
application as PPy-based adsorbents for Cr(VI) ions.

Chromium, a transition element, is the 21st abundant element in the Earth’s crust. It was discovered in 1797 by the
French chemist Louis Nicholas Vauquelin (Pereira et al. 2021). The major chromium compound is ferric chromite
(FeCrO4) mainly found in South Africa, Russia, Kazakhstan, India and the Philippines (Loock et al. 2014) Chromium

is widely used in catalysis, electroplating, chrome plating, leather tanning, glass industries, wood preservation and textile
industries (Dinker and Kulkarni 2015; Zhao et al. 2016; Shahid et al. 2017; Jiang et al. 2018; Tumolo et al. 2020). Table 1
shows some industrial products containing Cr(VI) ions. This certainly demonstrates that Cr(VI) ions pose a water pollution

challenge as most of these compounds are highly soluble. Humans are also highly exposed to these Cr(VI)-containing
products.
://iwaponline.com/wst/article-pdf/85/5/1600/1020677/wst085051600.pdf



Table 1 | Products that contain hexavalent chromium (Perry 2021)

Product Types of hexavalent chromium chemicals

Pigments in paints, inks and plastics lead chromate, chrome green, molybdenum orange, zinc chromate, calcium chromate,
potassium dichromate, sodium chromate

Anti-corrosion coatings (spray plating and
spray coating)

Chromic trioxide (chromic acid), zinc chromate, barium chromate, calcium chromate,
sodium chromate, strontium chromate

Stainless steel and other high chromium
alloys

Hexavalent chromium (when cast, or torch cut)

Textile dyes Ammonium dichromate, potassium chromate, potassium dichromate, sodium chromate

Wood preservation Chromium trioxide

Leather tanning Ammonium dichromate
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Chromium exists as Cr(II), (III) and (VI), with Cr(II) being unstable. Trivalent and hexavalent forms in aqueous solution are

biologically significant (Qiu et al. 2014; Dinker and Kulkarni 2015; Shariati et al. 2017). However, Cr(VI) is 500 times more
toxic than Cr(III). Cr(III) is mostly insoluble and is a micronutrient which is biologically important. Cr(VI) is extremely sol-
uble and mobile (1,680 g/L) over a wide pH range (Dinker and Kulkarni 2015; Prepared by Federal-Provincial-Territorial

Committee 2015; Zhao et al. 2017; Borthakur et al. 2019; Swaidan et al. 2019; Wei et al. 2020; Jing et al. 2021). Depending
on the pH, it occurs in numerous forms comprising H2CrO4, HCrO4

�, CrO4
2� and Cr2O7

2�. Figure 1 shows the relative distri-
bution of different species of Cr(VI) in aqueous solution. At pH more than 6 the CrO4

2� is dominant, whereas at below pH 6
Cr(VI) exists as H2CrO4 and HCrO4

�, with HCrO4
� being predominant. At very high Cr(VI) concentrations, HCrO4

� dimerises

to Cr2O7
2� (IARC Monographs-100C 1990; Dinker and Kulkarni 2015; Tran et al. 2019; Hato et al. 2019) Subsequently,

Cr(VI)-containing compounds are highly soluble and mobile in aqueous environments leading to potential Cr(VI) pollution.

2. HEALTH AND ENVIRONMENTAL EFFECTS OF Cr(VI)

Inappropriate disposal of the Cr(VI) from aqueous solution or wastewater leads to considerable environmental problems and
jeopardize human health. Humans come into contact with Cr(VI) through dermal exposure, inhalation and ingestion

(Zhitkovich 2011; Loock et al. 2014; Hammud et al. 2015; Mahmud et al. 2015; Fan et al. 2017; Maleh et al. 2020).
Figure 1 | The relative distribution of different species of Cr(VI) in aqueous solution as function of pH (adapted from Dinker and Kulkarni
2015).
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The effects of Cr(VI) toxicity include mutagenic, teratogenic, carcinogenic and genotoxic on living organisms as well as bioac-

cumulation. Cancer and mutation take place through damage of the DNA–protein cross-links as well as single-stranded
breakage in live cells. Furthermore, Cr(VI) toxicity can include skin irritation, pulmonary congestion, hepatopathy and
lung cancer (Zhitkovich 2011; Sun et al. 2014; Dinker and Kulkarni 2015; Federal-Provincial-Territorial Committee 2015;

Fan et al. 2017; Chigondo et al. 2019; Maleh et al. 2020; Tumolo et al. 2020; Jing et al. 2021). The presence of high concen-
trations of Cr(VI) ions in the soil causes disruption of soil organisms through the destruction of the natural soil enzymes that
help preserve good soil quality (Hato et al. 2019). Furthermore, Cr(VI) ions can disrupt aquatic life through free movement in
marine and biological species (Zhitkovich 2011).

A grave case is the fate of chromite mine workers in Sukinda in the Jajpur and Orisha state where it was reported that 70%
of the surface water and 60% of drinking water contains Cr(VI) ions (Walsh 2007) at levels above the internationally stipu-
lated. Infertility, birth defects and still births were predominant while 84.75% and 86.42% deaths were reported at the mine

and surrounding villages, respectively. Gastrointestinal problems, tuberculosis and asthma were reported as common ail-
ments around the mine as a result of water contaminated with Cr(VI) ions (Walsh 2007; Bae et al. 2009). Consequently,
its levels in drinking and surface water as well as industrial wastewater are regulated (Sutton 2010; Dinker and Kulkarni

2015). The acceptable standards of Cr(VI) by Bureau of Indian Standards (BIS-2012), World Health Organisation (WHO)
and USA Environmental Protection Agency (EPA) are 0.05 mg/L and 0.1 mg/L for drinking and for surface water, respect-
ively (Chromium (VI) Handbook 2004; Sutton 2010; Saha et al. 2011; WHO Chron. 2011; Loock et al. 2014; Dinker and

Kulkarni 2015). This makes it fundamental to remove or reduce Cr(VI) ions from water bodies to acceptable levels. A
review aimed at critically examining the extent to which PPy-based adsorbents have been utilized for Cr(VI) ions removal
is thus important if the Cr(VI) ions environmental mitigation is to be clearly understood.

3. METHODS OF REMOVING Cr(VI) IONS FROM WATER

Due to severe health effects of Cr(VI), it is essential to treat water and wastewater containing Cr(VI) ions before release into
the environment or modify it into less toxic forms. A variety of well-established methods are available namely chemical pre-
cipitation (Tumolo et al. 2020; Mdlalose et al. 2020), electrochemical (Dinker and Kulkarni 2015), ion exchange resin

(Mahmud et al. 2015), coagulation-flocculation (Jiang et al. 2018), reverse-osmosis (Dinker and Kulkarni 2015; Aigbe &
Osibote 2020), membrane filtration (Maleh et al. 2020; Mdlalose et al. 2020), electrocoagulation (Rimu & Rahman 2020),
bioremediation (Maleh et al. 2020), electrokinetics (Dinker & Kulkarni 2015), reduction (Jiang et al. 2018) and adsorption

(Muhammad & Bilal 2020). Figure 2 gives a summary these methods for removing Cr(VI) ions from water. These well docu-
mented methods, have been extensively utilized and quite a number of them are still used to date. However, their application
still pauses various environmental challenges ranging from being uneconomic, generation of large volumes of secondary pol-

lutants, fouling, high energy requirements, low efficiency for the removal of trace levels of pollutants, requirement of large
volumes of chemicals, pH sensitivity as well as pre- and post-treatment procedures (Zhao et al. 2016; Jiang et al. 2018;
Chigondo et al. 2019; Hato et al. 2019; Maleh et al. 2020; Soni et al. 2020). Adsorption technology has however attracted

much attention due to its simplicity in design, cost–effectiveness, high removal efficiency, wide choice of adsorbents, easy
operational conditions and environmental friendliness (Dinker & Kulkarni 2015; Ghosh et al. 2020; Maleh et al. 2020;
Wang et al. 2020; Mdlalose et al. 2020). Even though it also has its limits like tedious post-treatment processes, needed
for hybridized adsorbents to improve their capacity, rapid saturation, expense of regeneration and loss of material, it is

more preferable than all the other methods for Cr(VI) ion remediation.

3.1. Adsorption process

The adsorption procedure encompasses the accumulation of material (adsorbate) liquid or gas on the surface of a solid phase
material (adsorbent) (Wang et al. 2015) in batch or column mode. Figure 3 summarises some basic adsorption concepts. The
adsorption process comprises the build-up or adherence of gas, liquid or dissolved solid molecules ions on the surface of a

solid such as carbon, biochar, chitosan and polymer composite (Wang et al. 2015; Hato et al. 2019). The adsorbate becomes
attached on the surface of the adsorbent by physical or chemical means. As a result, the adsorption process is a mass transfer
system (diffusion, migration and convection) from a liquid or gaseous phase to solid phase. Adsorbate molecules from bulk

solution migrate to the active sites available on the surface of the adsorbent. Adsorbents are distinguished by active sites
which are able to interact with particles from bulk solution as a result of their specific electronic and spatial properties.
These active sites might have the similar or dissimilar energy, depending on the type of material surface. The opposite of
://iwaponline.com/wst/article-pdf/85/5/1600/1020677/wst085051600.pdf



Figure 2 | Conventional methods of Cr(VI) ion removal.

Figure 3 | Summary of the basic adsorption technology concepts (adapted from Tran et al. 2017).
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adsorption is called desorption, which is the release of adsorbed species from the adsorbent surface, back into the bulk sol-

ution which happens during regeneration of the adsorbent. The adsorption process could be monolayer (surface coverage of
the adsorbate onto an adsorbent surface where all the adsorption active sites have the same energy) or multi-layer where the
quantity of adsorbed molecules is added for all active sites with discrete bond energy, with the stronger binding sites occupied

first (Tran et al. 2017; Hato et al. 2019).
To thoroughly understand the properties of adsorbents and to interpret the adsorption phenomenon and mechanisms, a

variety of physico-chemical techniques can be utilized to characterize an adsorbent. These various characterization tech-
niques and the adsorbent information availed are illustrated in Figure 4. The process of adsorption mostly considered as

physisorption and chemisorption plays a major part in sorbate attraction to the sorbent (Bajpai and Rajpoot 1999; Ali and
Gupta 2007; Hua et al. 2012; Chanakya and Mahindra 2017; Hato et al. 2019; Aigbe & Osibote 2020). During physisorption
the sorbate is reversibly bonded to the adsorbent surface by van der Waals forces at low enthalpy values of about 20 kJ/mol,

low temperature, multi-layered sorption and low activation energy. In chemisorption, the adsorbent is bound to the sorbent
through covalent bonding or electrostatic attraction characterized by irreversible sorption with a high sorption enthalpy from
�80 to �400 kJ/mol, monolayer sorption and high activation energy. Adsorption is affected by various factors such as charge

of the adsorbent and adsorbate, pH of the aqueous solution, temperature of the solution, adsorbent concentration, dosage and
surface area (Hato et al. 2019; Aigbe & Osibote 2020).

To date, researchers have attempted to produce suitable adsorbents with high adsorption capacity and selectivity for the

rapid removal of Cr(VI) ions from water and wastewater. Numerous adsorbents have been utilized for this cause including
activated carbon (Lal et al. 2020; Ugwu and Agunwamba 2020), zeolites (Mthombeni et al. 2015), biomass (Maleh et al.
2020), fly ash (Farooqi et al. 2021), polymers (González-López et al. 2020; Rimu & Rahman 2020; Sheng et al. 2021),
metal and metal oxides (da Silva Neto et al. 2019), carbon nanotubes (Anastopoulos et al. 2017), graphene (Zhao et al.
2016), clay minerals (Bentchikou et al. 2017), polymers and polymer-inorganic hybrid adsorbents (Mahmud et al. 2015;
Jiang et al. 2018; Wang et al. 2020).
Figure 4 | Physico-chemical techniques that can be utilized to characterize an adsorbent (adapted from Tran et al. 2017).
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4. POLYPYRROLE-BASED ADSORBENTS

Conducting polymer(CP)-inorganic hybrid adsorbents have received enormous consideration in many applications owing to
their simplicity in synthesis, satisfactory electrical conductivity, excellently biocompatible, fascinating electronic and redox
properties, eco-friendliness and low cost (Ates et al. 2012; Huang et al. 2014; Dinker and Kulkarni 2015; Mahmud et al.
2015; Jiang et al. 2018; Chigondo et al. 2019; Hato et al. 2019). One such polymer whose composites have attracted
much attention for Cr(VI) remediation is polypyrrole (PPy) (Bhaumik et al. 2012; Mahmud et al. 2015; Hato et al. 2019;
Aigbe & Osibote 2020).

4.1. Polypyrrole conducting polymer

PPy is a conducting polymer. Its conductivity trait originates from minor modification of alternating double single bonds
along major polymer chain overlapping the pi-bonds in their structure. This enables free electron shift and transfer in
their bound atom space. These synthetic polymers have conjugated π-electron moiety exhibiting exceptional electronic prop-
erties, for instance truncated energy, optical transition and ionisation potentials, in addition to high electron affinities

(Krishnani et al. 2013; Mahmud et al. 2015; Hato et al. 2019; Taghizadeh et al. 2020). CP conductance stems from their
ease of oxidation or reduction, a characteristic that is not found in traditional polymers.

The most popular methods of preparing PPy involves chemical oxidative polymerization of pyrrole and electrochemical

polymerization (Ballav et al. 2012; Krishnani et al. 2013). Chemical oxidative polymerization takes place with a variety of
dopants under different conditions (Figure 5), since the adsorption efficiency largely depends on the preparation conditions
of PPy (Huang et al. 2014; Mahmud et al. 2015). The two methods for the process of doping in chemical polymerization of

CPs are p-doping where the polymer becomes oxidized with counter anions and n-doping where the polymer is reduced with
countercations (Hato et al. 2019; Taghizadeh et al. 2020). The chemical oxidants used in the preparation of PPy are aqueous
APS and anhydrous iron (III) chloride (Hato et al. 2019).

PPy has shown a worthy prospect in adsorption application due to its reputable environmental stability, extraordinary con-

ductance, redox properties and easiness of processing (Das and Prusty 2012; Maity et al. 2019). PPy is inexpensive, easy to
synthesize, eco-friendly and has abundant amine groups which facilitate adsorption and chelation. During complexation cat-
ionic nitrogen atoms on the PPy moiety act as adsorption sites for heavy metals ions through hydrogen bonding or

electrostatic attractions (Mahmud et al. 2015; Hato et al. 2019; Maity et al. 2019). Consequently, the use of PPy for the
removal of Cr(VI) has benefited much from this behaviour coupled by its ease acid–base doping–dedoping process, incredible
stability in the environment and reversibility (Mahmud et al. 2015; Hato et al. 2019). Direct reduction of adsorbed Cr(VI) to

Cr(III) on sites can be accomplished through donation of electrons by O, S, and N atoms of dopants (Rodríguez et al. 2000;
Figure 5 | Chemical polymerization of pyrrole monomer (adapted from Hato et al. 2019).
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Ates et al. 2012; Tran et al. 2019). Nevertheless, PPy tends to agglomerate owing to π–π interactions between the chains, cul-

minating in reduction of surface area and lowering number of binding sites for Cr(VI) ions (Kera et al. 2017; Chigondo et al.
2019). Chain modification with dopants in the course of polymerization can overcome these restrictions (Ballav et al. 2012;
Amalraj et al. 2016a, 2016b; Das et al. 2019). Immense studies have been conducted on the synthesis of PPy with various

dopants and additives to increase its adsorption efficiency. Large numbers of modifications, aimed at improving PPy compo-
site adsorptive performance towards Cr(VI) have been studied (Bhaumik et al. 2012; Hammud et al. 2015; Mahmud et al.
2015; Aigbe & Osibote 2020). Moreover, PPy-based adsorbents turn into electron donors for the reduction of Cr(VI) to
Cr(III) under acidic conditions as illustrated in Equations (1)–(3) (Fang et al. 2018; Chigondo et al. 2019). This occurs through
electron transfer from a neutral state (PPy0) to Cr(VI). These adsorbents also offer adsorption sites for Cr(III):

PPyþ þ e� ! PPy0 (1)

3PPy0 þ 7Hþ þHCrO�
4 ! Cr3þ þ 4H2Oþ 3PPyþ (2)

3PPy0 þ CrO2�
4 þ 4H2O ! Cr3þ þ 8OH� þ 3PPyþ (3)

5. POLYPYRROLE-BASED ADSORBENTS FOR CR(VI) REMOVAL

Great strides have been made in synthesizing PPy in the presence of various dopants and additives with the second com-
ponents improving the adsorption efficiency as modelled by the Langmuir adsorption capacity under given conditions
(Hato et al. 2019). Table 2 gives a summary of the latest investigations of PPy-based composites and the Langmuir adsorption

capacities and experimental conditions for the removal of Cr(VI) ions which is impressive for one type of adsorbent backbone
(PPy). It is noticeable that the adsorption of Cr(VI) ions is more effective at low pH in agreement with the introduction dis-
cussion focusing on species of Cr(VI). The nature and properties of the dopant or additive in the PPy composite influences the

adsorption efficiency of the adsorbent. This is so because different adsorbents have different surface areas, active sites, selec-
tivity, stability, generatability and rapidness of the adsorption process (Hato et al. 2019). According to a study done by Zhan
et al. (2018a, 2018b) bamboo-like PPy nanofibrous mats nanocomposite prepared by non-emulsion electrospinning and in-

situ polymerization was the most effective adsorbent with a maximum uptake of 961.5 mg/g at 25 °C. The Cr(VI) adsorption
by bamboo-like polypyrrole nanofibrous mats was dictated by electrostatic attractions, anionic exchange and reduction mech-
anisms owing to the special porous structure, high surface area and abundant adsorption active sites (Zhan et al. 2018a,
2018b). This was marked considering the Cr(VI) ion concentration range of 5–250 mg/L in comparison to other materials
outlined in Table 2 falling within the same concentration range. However, the challenge of a complex fabrication procedure
may limit its applicability. Equally, capsular polypyrrole hollow nanofibers (PPy-HNFs) fabricated via in situ polymerization
of pyrrole on an organic–inorganic template, followed by acid etchings showed remarkable performance towards Cr(VI) in

aqueous solution with a maximum adsorption capacity of 839.30 mg/g at pH 2 (Zhao et al. 2015) but its concentration range
(50–600 mg/L) is higher than bamboo-like polypyrrole nanofibrous mats. It was reported that the adsorption process took
place under very acidic pH of 2 in most cases owing to stronger electrostatic attractions of hydroxyl (OH) groups to

Cr(VI) ions and protonated amine groups. The adsorbents PPy/NiFe2O4 (Sun et al. 2017a, 2017b) and PPy-TiP (Baig et al.
2015) exhibit less effectiveness in the removal of Cr(VI) ions considering their concentration ranges. In some studies, it is
difficult to assess the adsorbent capacity due to lack of adequate data like temperature of adsorption and Cr(VI) concentration

range. Most (98%) of the adsorption processes using various adsorbent were better modelled by the Langmuir isotherm with
all the kinetics studies being pseudo-second-order modelled.

5.1. Amino doped polypyrrole adsorbents

The ease of protonation of the amino (-NH) group of PPy under acidic conditions is beneficial to the adsorption of Cr(VI)

through ion exchange and electrostatic attraction. Conversely, the deprotonation may be through simple solution pH
change, signifying its exceptional regeneration in adsorption. To this end, several studies had been done aimed at increasing
the number of amino groups within the PPy composite moiety by using amino-based dopants. Studies (Ballav et al. 2012;
Bhaumik et al. 2012; Chávez-Guajardo et al. 2015; Amalraj et al. 2016a, 2016b; Kera et al. 2016; Kera et al. 2017; Sall
et al. 2017; Kera et al. 2018; Chigondo et al. 2019) utilized amino dopants to enhance PPy adsorption of Cr(VI) successfully.
Amalraj et al. (2016b) prepared agglomerated spherical particles of threonine-doped polypyrrole (Thr-PPy) via in situ
://iwaponline.com/wst/article-pdf/85/5/1600/1020677/wst085051600.pdf



Table 2 | Adsorption capacities and experimental conditions of polypyrrole-based adsorbents for the removal of Cr(VI) ions

Adsorbent
Langmuir adsorption
capacity, qmax (mg/g)

Temperature
(°C) pH

Concentration
range (mg/L) Ref.

Bamboo-like PPy nanofibrous mats 961.50 25 2.0 50–250 Zhan et al. (2018a, 2018b)

Capsular PPy hollow nanofibers
(PPy-HNFs)

839.30 25 2.0 50–600 Zhao et al. (2015)

PPyPANI@RHA) 769.15 30 2.0 50–100 Dutta et al. (2021)

PPy/Ca-REC composites 714.29 25 2.0 300–1500 Xu et al. (2019b)

PPy/REC 689.70 25 2.0 300–1500 Xu et al. (2019a)

PPy-NH2 675.23 25 2.0 150–300 Liu et al. (2018b)

PPy–GO NC 625.00 25 2.0 25–100 Setshedi et al. (2015)

GO-αCD-PPY NCs 606.06 25 2.0 100–700 Chauke et al. (2015)

PPy/BC 555.60 25 2.0 100–200 Shao et al. (2021)

PPy-mPD/Fe3O4 555.60 25 2.0 100–600 Maponya et al. (2020)

PPy-OCNT NC 555.56 25 2.0 200–600 Omwoyo et al. (2015)

PANIþ PPy 510.90 25 2.0 50–350 Janmohammadi et al. (2021)

PPy/graphene oxide composite nanosheets 497.10 nr 3.0 nr Li et al. (2012a, 2012b)

PPy-c-CS 401.00 nr 2.0 nr Ji et al. (2018)

GO/MnO2/PPy 374.53 25 2.0 150–300 Liu et al. (2018a)

PPy/rGO aerogel EPGA 361.00 25 2.0 5–100 Chen et al. (2020)

PMMA/RHA/PPy 360.50 19 2.0 10–70 da Rocha et al. (2020)

Graphene/Fe3O4@PPy 348.40 25 2.0 nr Yao et al. (2014)

MZ-PPy 344.83 25 2.0 100–300 Mthombeni et al. (2015)

PPy/MLS 343.64 25 2.0 25–75 Du et al. (2020)

SP/PPy 336.70 25 2.0 100–400 Tan et al. (2017)

Fe3O4@PPyArg 322.58 25 2.0 50–450 Chigondo et al. (2019)

Gg-g-poly (Am)/PPy 312.50 25 2.0 nr Goddeti et al. (2020)

PPy) hydrogels 312.00 nr 2.0 nr Li et al. (2015)

PPy/DABSA composite 303.03 25 2.0 nr Kera et al. (2017)

PPy-PANI/Fe3O4 303.00 25 2.0 nr Kera et al. (2016)

PPy-sepiolite nanofibers 302.00 25 2.0 200–400 Chen et al. (2014a, 2014b)

γ-Fe2O3@Chi@PPY 301.20 nr 2.0 1–500 Reis et al. (2021)

PPy/Fe3O4/SiO2 298.00 nr 2.0 25–300 Alzahrani et al. (2021)

PPy/OMWCNTs NCs 294.00 25 2.0 100–500 Bhaumik et al. (2016)

(Ppy-Fe3O4/rGO 293.30 30 2.0 nr Wang et al. (2015)

PPy/MoS2 257.73 25 2.0 50–200 Xiang et al. (2021)

PPy/PANI 256.41 nr 7.0 5–100 Thao et al. (2019)

PPy-N membranes 250.31 35 2.0 nr Li et al. (2012a, 2012b)

Fe3O4@gly-PPy NC 238.09 25 2.0 50–150 Ballav et al. (2014a, 2014b)

PPy-PANI 227.00 25 2.0 100–400 Bhaumik et al. (2012)

AHNSA 224.00 nr 2.0 nr Sall et al. (2017)

PPy-gly 217.39 25 2.0 50–100 Ballav et al. (2012)

Fe3O4/PPy 209.20 25 2.0 5–70 Wang et al. (2012)

GCS@PPy/L-cys 209.18 - 2 10–200 Li et al. (2020)

PPy/Fe2O3 MNC 209.00 nr 2.5–100 Chávez-Guajardo et al. (2015)

(Continued.)
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Table 2 | Continued

Adsorbent
Langmuir adsorption
capacity, qmax (mg/g)

Temperature
(°C) pH

Concentration
range (mg/L) Ref.

Magnetic PPy/Fe3O4 208.77 25 2.0 200–700 Aigbe et al. (2018)

PPy/Fe0 NC 202.00 25 2.0 nr Katata-seru et al. (2020)

PPy-coated on cellulose sulfate fibers 198.00 nr 2.0 nr Hosseinkhani et al. (2020)

PPy/SBA-15 194.17 25 2 nr Wang et al. (2021)

Threonine/PPy 185.50 25 2.0 nr Amalraj et al. (2016b)

PPy-mPD 183.20 25 2.0 100–600 Kera et al. (2018)

Asp/PPy 176.67 30 2.0 nr Amalraj et al. (2016b)

PPy-Fe3O4 176.00 25 2.0 100–400 Bhaumik et al. (2013)

PPy/MMT 166.70 30 2.0 150–350 Chen et al. (2015)

PPy/Fe3O4/AgCl 166.70 20 2.0 100–500 Sun et al. (2017b)

Sulfonated poly(arylene ether nitrile)/
PPycore/shell

165.30 25 2.0 nr Zhan et al. (2017)

PPy/SCB 156.00 25 2.0 25–100 Chen & Pan (2021)

PPy-HNTs NC 149.25 25 2.0 25–100 Ballav et al. (2014a, 2014b)

NCPPy 147.30 30 nr Shahnaz et al. (2020)

PPy – Fe3O4 – SW 144.93 30 2.0 nr Sarojini et al. (2021)

Ppy@x%MgFe2O4 138.60 25 2.0 nr Karthikeyan et al. (2021)

PPy-OMMT NC 119.34 25 2.0 250–800 Setshedi et al. (2013)

PPy–Fe3O4 NC 119.00 25 2.0 50–150 Muliwa et al. (2016)

MSEP/PPy 108.85 25 2.0 50–100 Zhou et al. (2018)

PPy@magnetic chitosan 105.00 25 2.0 nr Alsaiari et al. (2021)

PANI/PPy) 91.60 25 2.0 100–200 Wang et al. (2013)

PPy/Ti(HPO4)2 86.84 15 3.4 nr Qi et al. (2016)

UFB-PPy 85.00 30 2.0 20–100 Zhang et al. (2020)

PPy-modified natural corncob-core sponge 84.70 25 3.5 50–200 Zhang et al. (2016)

CS/PPy 78.60 30 4.2 25–200 Karthik and Meenakshi (2015)

PPy-LDHs 76.21 25 5.0 10–50 Sahu et al. (2019)

PPy/PG 72.81 30 5.0 10–200 Yao et al. (2012)

MSFA/PPy. 66.93 25 2.0 25–100 Zhou et al. (2016)

PPy/NiFe2O4 50.00 20 2.0 100–1000 Sun et al. (2017a, 2017b)

PPy/ATP 48.45 25 2.0 10–100 Chen et al. (2014a, 2014b)

PPy/Fe3O4/ATP 43.48 nr 2.0 100–500 Sun et al. (2020a, 2020b)

PPy@poly(St-co-DVB) 35.00 and 16.00 nr 2.0 nr Chaleshtari and Foudazi
(2020)

PPy-TiP 31.64 30 2.0 200–1000 Baig et al. (2015)

MBC/PPy 19.23 25 5.3 20–60 Yang et al. (2018)

Gel/CS/PPy. 15.00 nr 2.0 nr Xing et al. (2020)

PPy/RCC activated carbon 8.80 30 2.0 2–10 Thamilarasu et al. (2012)

PPy/SD 3.40 nr 2.0 10–120 Ansari and Fahim (2007)

PPy cellulose fiber - - 2.0 100–700 Lei et al. (2012)

Ppy/Fe0 NC nr nr 2.0 nr Mdlalose et al. (2020)

PPy/Fe3O4 nr nr 2.0 50–250 Mirrezaie et al. (2014)

nr, not reported.
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polymerization of pyrrole with threonine for the Cr(VI) uptake from aqueous solutions. The adsorbent was characterized

using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy
(FESEM/EDS), high resolution-transmission electron microscopy (HR-TEM), Braunauer–Emmett–Teller (BET) method
and X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques. The adsorption experiments were car-

ried in the batch mode and modelled using Langmuir, Freundlich, Dubinin–Radushkevich and Temkin adsorption isotherm.
It was found that the adsorption was best described by Langmuir isotherm model with a maximum adsorption capacity of
185.5 mg/g and the process was spontaneous and endothermic. The kinetic studies revealed that pseudo-second-order and
intra-particle diffusion models best described the process. Adsorbents of high adsorption capacity for Cr(VI) ions removal

were reported from these studies. Nevertheless, comprehensive studies on the adsorbent regeneration are still limited. Com-
plicated fabrication procedures and the rupture of the polymer chain by a repeated reaction of oxidation with highly oxidizing
Cr(VI) species could decrease the mass sorption sites in the spent adsorbent, which could account for the decrease in the

adsorption capacity.

5.2. Polypyrrole modified bio-adsorbents

The application of bio-adsorbents gives a green alternative for heavy metals removal because they are biodegradable, low cost,
biocompatible and non-toxic (Karthik and Meenakshi 2015; Jiang et al. 2018; Alsaiari et al. 2021). Such biosorbents like cel-
lulose (Hosseinkhani et al. 2020), corncob (Zhang et al. 2016), sisal pulp (Tan et al. 2017), rice husks (da Rocha et al. 2020),
sawdust (Ansari and Fahim 2007) and chitosan (Ji et al. 2018) have been combined with PPy to improve the adsorption per-
formance on aqueous Cr(VI) ions as they possess exceptional functional groups which facilitate adsorption (Melah et al.
2020; Liu et al. 2021). These are effective as they are eco-friendly, renewable, easy and inexpensive to synthesize. Hossein-
khani et al. (2020) synthesized polypyrrole coated on cellulose sulfate fibres which were characterized by EDS, FTIR,

BET and thermogravimetric analyses (TGA). The as-synthesized adsorbent was assessed on the effect of pH, contact time,
adsorbent dose and initial concentration of Cr(VI) ions. The removal percentage of Cr(VI) was 99.9% under the optimised
conditions at initial concentration of Cr(VI), 200 mg/L, pH 2; and 200 minute contact time. The adsorption process was

described by the Freundlich, Langmuir, Temkin, Redlich–Peterson, Radke–Prausnitz, Dubinin–Radushkevich and UT
models with a Langmuir model maximum adsorption capacity of 198 mg/g being reported. Furthermore, the adsorption pro-
cess followed the intra-particle diffusion model and was endothermic and spontaneous. The adsorbent could be regenerated

in four cycles and was selective towards Cr(VI) ions as Cu2þ, Ni2þ and Zn2þ did not interfere with the removal percentage of
Cr(VI) ions considerably.

5.3. Polypyrrole-modified carbon material

Carbon nanomaterials exist in various forms including carbon nanotubes (CNTs) (Anastopoulos et al. 2017), graphene, acti-
vated carbon and bio char. CNTs have been extensively applied for the removal of heavy metal ions due to their small size,
respectable electrical conductivity, hollow/layered structures and high specific surface area (Bhaumik et al. 2016). Graphene

oxide (GO) is a recent novel nanostructure form of carbon materials with a large specific surface area, good mechanical
strength and flexibility (Chauke et al. 2015). Activated carbon (AC) adsorption is widely used in the removal of heavy
metal ions in wastewater. It has a large specific surface area for adsorption but commercial AC is typically expensive

hence cheaper and renewable agricultural raw materials have been utilized for the fabrication of AC and biochar. Due to
the outstanding adsorption properties (Ghosh et al. 2020) they can be used in PPy doping to produce Cr(VI) ions exceptional
adsorbents and several studies have been reported to this end (Thamilarasu et al. 2012; Wang et al. 2013; Omwoyo et al.
2015; Chen et al. 2020; Li et al. 2020; Reis et al. 2021). Furthermore, dispersed GO is capable of providing highly active
PPy-based nanocomposite with remarkable Cr(VI) ions removal efficiency (Setshedi et al. 2015). Subsequently, GO exploits
the advantage of the capability of cyclodextrins to self-assemble with numerous pollutants through inclusive complexation.
Chauke et al. (2015) reported the oxidative synthesis of PPy functionalized with both graphene oxide and α-cyclodextrin

(αCD) to afford GO-αCD-PPy NCs which was characterised by FTIR, FESEM, HR-TEM, BET and XRD techniques. Batch
adsorption experiments were performed and the determined optimum conditions were temperature of 25 °C, pH of 2, and
contact time of 30–200 min at 200 mg/L of Cr(VI) concentration. The Langmuir isotherm best described the adsorption

with a maximum adsorption capacity of 606.06 mg/g which was endothermic in nature and the adsorption kinetics followed
the pseudo-second-order model. The effect of co-existing ions studies exposed a very selective adsorbent which was regener-
ated in three cycles.
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5.4. Polypyrrole-modified clay and mineral

Clay materials are hydrated aluminium-silicate-bearing minerals sheet layers held together by van der Waals forces or hydro-
gen bonds (Xu et al. 2019a). They are widely applied to adsorption removal of heavy metal ions and adsorbent supported with

clay minerals has been widely researched for the Cr(VI) ions removal due to its special surface area, high exchange capacity,
and enriched removal ability of heavy metal ions. Adsorption on clays takes place through hydroxyl, oxygen and particles
edge on the surface of clays and thus they are very useful in adsorption technology. PPy-clay based adsorbents have been
studied yielding good results as already shown in Table 1 (Setshedi et al. 2013; Ballav et al. 2014a, 2014b; Zhou et al.
2018; Olad et al. 2019; Sarojini et al. 2021). Xu et al. (2019b) prepared semi-spherical agglomerated as polypyrrole/
calcium rectorite exfoliated sheets (PPy/Ca-REC) composites for aqueous solution Cr(VI) ions adsorption, via in situ
polymerization of pyrrole monomer. The as-synthesized adsorbent was characterised by XRD, FTIR spectroscopy, SEM

and XPS. The adsorption of Cr(VI) onto the PPy/Ca-REC adsorbent was extremely pH dependent and the adsorption kinetics
obeyed the pseudo-second-order kinetic model attaining equilibrium in 30–180 min. The adsorption isotherm data fitted well
to the Langmuir isotherm model giving a maximum adsorption capacity of 714.29 mg/g at 25 °C. The composite was revived

for three consecutive adsorption–desorption cycles and showed high selectivity towards Cr(VI) ions. Through XPS results,
electrostatic interactions, ionic interaction as well as reduction were postulated as the adsorption mechanisms for Cr(VI)
removal.
6. REGENERATION OF PPY-BASED ADSORBENTS

The regeneration and reusability of an adsorbent is necessary to evaluate its feasibility and cost−effectiveness for application
in the large scale treatment of industrial wastewater (Kera et al. 2018). Most studies reviewed conducted regeneration studies

of the spent adsorbents including arginine-doped polypyrrole (Fe3O4@PPyArg) (Chigondo et al. 2019), polypyrrole-polyani-
line coated rice husk ash (PPyANI@RHA) (Dutta et al. 2021), waste plastic filter modified with polyaniline and
polypyrrole (PPF@PANI þ PPy) (Janmohammadi et al. 2021), magnesium ferrite-reinforced polypyrrole hybrids (Ppy@x%

MgFe2O4) (Karthikeyan et al. 2021), m-phenylenediamine-modified polypyrrole (PPy-mPD) (Kera et al. 2018), polypyrrole
and montmorillonite clay (PPy-MMT) (Mdlalose et al. 2020), Fe3O4 and attapulgite-doped polypyrrole (PPy/Fe3O4/ATP)
(Sun et al. 2020a, 2020b) and polypyrrole-coated molybdenum disulfide (PPy/MoS2) (Xiang et al. 2021). Numerous studies

have reported on various regeneration methods using acids, bases or salts aqueous solutions (Mdlalose et al. 2018) with the
most popular desorbing solutions being 0.05 M or 0.1 M NaOH while 2 M HCl was used for adsorbent regeneration. NaOH
accelerates the deprotonation of –NH3

þ groups on adsorbent surfaces resulting in the decrease of electrostatic attraction
between these groups and Cr(VI) species (HCrO4

_) as well as OH groups out competing HCrO4
� (Mdlalose et al. 2018;

Dutta et al. 2021; Janmohammadi et al. 2021). Nevertheless, such a more comprehensive study of the adsorbent regeneration
is still limited as described in most literature. These are necessary if meaningful information is to be derived from adsorption
studies and have potential in large-scale industrial water treatment. The number of adsorption–desorption cycles ranged from

three to six. The rupture of the polymer chain by a repeated reaction of oxidation with highly oxidizing Cr(VI) species could
decrease the mass and sorption sites in the spent adsorbent, which could account for the decrease in the adsorption capacity.
Hence, further studies are necessary to investigate alternative desorption and regeneration treatments which will minimise

deterioration of the structure of the CP composites and increase their lifespan. Methods to improve the structural integrity
of the CP composites should also be investigated as robust adsorbents are attractive for real field applications. Mdlalose
et al. (2020) conducted a detailed and informative study of adsorption–desorption cycles using pristine NaOH and

NH4OH as well as with HCl, NH4Cl, HNO3 combinations to establish the stability of polypyrrole-montmorillonite clay com-
posite. Improved regeneration efficiencies were observed for regeneration using NH4Cl as some of the reagents used became
dopants which improved the process.
7. THE Cr(VI) ION REMOVAL MECHANISMS

To evaluate the removal efficiency of PPy-based adsorbents, the elucidation of the conceivable mechanisms of the adsorption
process is desirable. The adsorption behaviours of PPy-based adsorbents are associated with the adsorption factors of the sol-

ution namely initial Cr(VI) ion concentration, pH, temperature, co-existing ions and contact time (Kera et al. 2017; Xiang
et al. 2021). Furthermore, the adsorption mechanisms of the particular composite adsorbent hinges on the properties of
PPy and various substrates. However, there are certain shared characteristics for all PPy-based adsorbents for the uptake
://iwaponline.com/wst/article-pdf/85/5/1600/1020677/wst085051600.pdf
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of Cr(VI) ions from aqueous solution or wastewater. Lower pH typically demonstrates an improved adsorption capacity

attributable to robust electrostatic attractions between aqueous Cr(VI) ions and protonated amine groups of the PPy
moiety. The reduction in adsorption capacity as the original solution pH increases was largely a result of the waning electro-
static interactions between adsorbent and Cr(VI) ions as well as their competitive adsorption of Cr(VI) ions and OH� on PPy-

based adsorbents adsorption sites (Amalraj et al. 2016a; Li et al. 2020; Shao et al. 2021). Chemical redox reaction occurrence
during the Cr(VI) ions adsorption processes is validated by application of FTIR spectroscopy and XPS spectroscopy, X-ray
adsorption near edge structure (XANES) analysis techniques for the adsorbent before and after Cr(VI) ion adsorption
(Mdlalose et al. 2018; Chigondo et al. 2019; Tran et al. 2019). For example XPS and XANES N 1s core-level spectra of

PPy-based adsorbents before and after Cr(VI) ions adsorption with deconvoluted peaks at specific binding energies and
their percentage intensities would show a slight shift to the higher binding energies and reduced peak intensities were obser-
vable and documented indicating the involvement of N atoms in adsorption. Furthermore, XPS Cr 2p core level spectra

usually show bands typical for Cr(III) and Cr(VI) species on adsorbent surfaces (Kera et al. 2017; Fang et al. 2018; Mdlalose
et al. 2018; Chigondo et al. 2019; Tran et al. 2019; Wang et al. 2020; Wei et al. 2020; Karthikeyan et al. 2021) thus helping to
explain the adsorption mechanism. Quite a number of studies explained the mechanism using XPS analysis.

The removal of Cr(VI) ions by PPy-modified materials was mainly dependent on the dopant groups besides the amine
groups of PPy. Nevertheless, the nature of the PPy-based adsorbents affected the adsorption efficiency and adsorption mech-
anisms as this depended on the nature of the substrate material. Overall, the adsorption mechanisms of PPy-based adsorbents

appeared to have taken place by the reduction of Cr(VI) species to Cr(III) species under acidic conditions. In the meantime,
the amine group (�NH�) of PPy is partially oxidized to the positively charged species (�NH•þ) which can attract Cr(VI) ions
(Li et al. 2020). Thus, the adsorption process was associated with ion exchange, electrostatic attractions, complexation, che-
lation reactions with protonated sites and reduction (Tran et al. 2019; Liu et al. 2021; Mdlalose et al. 2020). Thus the

adsorption process can be divided into three portions dependent on the features of the adsorbent: surface complexation
under the acidic conditions between negatively charged aqueous Cr(VI) ions and protonated amine groups by electrostatic
attractions or ion exchange between aqueous Cr(VI) ions and OH� on adsorbent surface. Some Cr(VI) ions are reduced

to Cr(III) ions while amines are oxidized. Cr(III) are then chelated onto amino substituents on amino dopants and other poss-
ible functional groups on various substrates (Wang et al. 2013; Zhang et al. 2016; Wei et al. 2020). The difference in the
adsorption experiment conditions, unique adsorbent properties, and adsorbent preparation methods may lead to the different

adsorption mechanisms (Tran et al. 2019). In this regard some researchers went further to elucidate the Cr speciation in
adsorption, by utilising IC-ICP-MS to determine the concentrations of Cr(III) and Cr(VI) filtrate samples from the study of
the effect of pH on Cr(VI) ions removal (Setshedi et al. 2013; Kera et al. 2018; Chigondo et al. 2019; Rajeev et al. 2019).
At pH 2, the concentration of Cr(III) species was found to be high in the filtrate and no Cr(VI) ions were detected. Conver-

sely, at pH 3–12, Cr(VI) ions were increasingly detected. At higher pH, CrO4
2� dominates and since it has a low redox
Figure 6 | Plausible mechanisms of Cr(VI) ion removal by PPy-based adsorbents.
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potential (�0.26 V), it was not easily reduced to Cr(III). However, the removal mechanisms of PPy-modified substrate

materials remain to be studied further. The pathway of the removal mechanisms of Cr(VI) is summarised in Figure 6.

8. CONCLUSION AND FUTURE PERSPECTIVES

This review covers the major anthropogenic sources of Cr(VI), the major regular products containing these toxic ions and
their toxicity effects. It further explored the methods of Cr(VI) ions mitigation with adsorption technology being found to

be more appropriate due to low execution costs and easy to operate. A plethora of adsorbents is available including PPy-
based composites which have proven to be effective in Cr(VI) ions removal and several adsorption parameters influence
have been investigated including the effect of pH, initial concentration, temperature and co-existing ions. On the basis of

these parameters, it was found that the functionalized PPy materials are quite useful and hence are widely studied for
Cr(VI) adsorption. They display numerous advantages such as fast kinetics, high capacity and preferable sorption toward
Cr(VI) ions in water. However, to further inspire the practical application of PPy-based polymers in the removal of Cr(VI)

ions some technical limitations need to be resolved. To date, from the commercial point of view, no greater achievements
have been attained using PPy-based adsorbents. Extensive research is necessary to commercialise these adsorbents which
would give a new dimension for adsorption technology towards mitigation of the environmental pollution problems.

The Langmuir and Freundlich models have been found to be most prevalent adsorption isotherms models used to describe

the adsorption process with the Langmuir maximum adsorption capacity being used to compare the different adsorbents
reviewed. The adsorption efficiency might be considerably different from laboratory-scale bench experiment solutions. More-
over, a variety of PPy-based composite should be developed. Comprehensive study of the adsorbent regeneration is still

limited in most literature. This is necessary if meaningful information is to be obtained from adsorption studies and have
potential in large-scale industrial water treatment and to reduce the costs. The rupture of the polymer chain by a repeated
reaction of oxidation with highly oxidizing Cr(VI) species could decrease the mass sorption sites in the spent adsorbent,

which could account for the decrease in the adsorption capacity. Hence, further studies are necessary to investigate alterna-
tive desorption and regeneration treatments which will minimise deterioration of the structure of the CP composites and
increase their lifespans. Methods to improve the structural integrity of the CP composites should also be investigated as

robust adsorbents are attractive for real field applications. In some reviewed studies inadequate information was provided
and in others comprehensive, energy consuming preparatory methods were reported which cannot be reproduced on a com-
mercial scale in a cost-effective manner. The utilization of Cr(VI)-laden waste materials in other sectors of research in order to
limit the risk of secondary pollution as a result of the adsorption process is imperative.
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