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Abstract

Biotechnological approaches have always sought to utilize novel and efficient methods in the prevention, diagnosis, and
treatment of diseases. This science has consistently tried to revolutionize medical science by employing state-of-the-art
technologies in genomic and proteomic engineering. CRISPR—Cas system is one of the emerging techniques in the field of
biotechnology. To date, the CRISPR—Cas system has been extensively applied in gene editing, targeting genomic sequences
for diagnosis, treatment of diseases through genomic manipulation, and in creating animal models for preclinical researches.
With the emergence of the COVID-19 pandemic in 2019, there is need for the development and modification of novel tools
such as the CRISPR—Cas system for use in diagnostic emergencies. This system can compete with other existing biotech-
nological methods in accuracy, precision, and wide performance that could guarantee its future in these conditions. In this
article, we review the various platforms of the CRISPR—Cas system meant for SARS-CoV-2 diagnosis, anti-viral therapeutic
procedures, producing animal models for preclinical studies, and genome-wide screening studies toward drug and vaccine

development.
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Introduction

The SARS-CoV-2 virus, a member of the Coronaviri-
dae family, Betacoronavirus genus, and the causative agent
of Coronavirus Disease 2019 (COVID-19), is responsible
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for the third large-scale human outbreak of its family in the
last two decades. This zoonotic virus is a non-segmented
enveloped positive-sense single-stranded RNA virus with
a large genomic size that has high animal-to-human and
human-to-human transmission compared to its family
members [1]. The genomic sequence of this new emerging
virus has a high rate of mutation and recombination, due to
its unique self-replication phenomenon [2]. At the begin-
ning of the pandemic, the complete sequence of the viral
genome was shared through metagenomic approaches and
the three-dimensional structure of its key proteins was deter-
mined [3]. The fourteen open reading frames (ORF) of the
SARS-CoV-2 genome encode sixteen nonstructural proteins
to form replicase complex (such as 3-chymotrypsin-like pro-
tease (3CLpro), papain-like protease (PLpro), helicase, and
RNA-dependent RNA polymerase (RdRp), nine accessory
proteins, and four structural proteins (spike (S), membrane
(M), envelope (E), and nucleocapsid (N)). Spike protein has
two functional segments (S1 and S2) that are activated by
host cell proteases (cathepsin L and transmembrane protease
serine 2 (TMPRSS2) [4]. In SARS-CoV-2 the receptor-bind-
ing domain (RBD) of spike protein binds to the human cell
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receptors, Angiotensin-Converting Enzyme 2 (ACE2), and
defines the tropism and the pathogenicity of the virus, While
the spike protein of other human coronaviruses can bind to
the other cellular entry receptors such as aminopeptidase N
(APN) and dipeptidyl peptidase 4 (DPP4) too. Mutation in
RBD enhances the binding affinity of the virus to human
ACE2 and consequently higher transmissibility compared
to SARS-CoV and MERS-CoV [1, 5].

The creation of new and fast platforms at three compasses
of prevention, diagnosis, and treatment of virus infections
are remarkable biotechnological approaches in the COVID-
19 pandemic. Therefore, knowing more about the biology
and pathogenesis of the virus will help in diagnosis, treat-
ment regimens, and vaccine design. Regions of RARP gene
sequences in the ORF1ab, envelope protein gene (E), and
nucleocapsid protein gene (N) are hotspot regions used for
molecular detection of the SARS-CoV-2 virus due to their
conserved sequences [2]. The use of intervention strategies,
such as targeting the virus cell entry pathway, including
RBD, as well as the virus replication complex, including
RdRp, are critical targets in the design of anti-viral molecu-
lar therapeutic platforms [6, 7].

CRISPR-Cas System

Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR) and its associated proteins (Cas) are
encoded by bacteria and archaea as defensive mechanisms
against invasive genetic agents such as viruses and plas-
mids through a three-stage process of adaptation, matura-
tion, and interference [8, 9]. This two-component system
(CRISPR array and Cas protein) is classified into class I
and class II, including different types and subtypes based
on computational sequence and protein analysis of their
effector subunits. The discovery of the CRISPR system
has revolutionized biotechnology approaches because of
its genomic sequence recognition and enzymatic cleavage
ability to genetic engineering of the genome and beyond

Table 1 Applied types of class II CRISPR—Cas system

[10]. Types II, V, and VI from class II of the CRISPR/
Cas system have enzymatic activity with a similar nucle-
ase domain in their effector protein through the detection
of target DNA or RNA sequences. In CRISPR/Cas com-
plex, the CRISPR RNA (crRNA) is responsible for target
sequence (RNA or DNA) identification and can depend
on protospacer-associated motif (PAM) or protospacer
flanking site (PFS) based on CRISPR types. In addition
to crRNA and Cas complex, type II and type V-B have
additional trans-activating RNA (tracrRNA) which medi-
ates the binding between them. The single-guide RNA
(sgRNA) sequence is chimerically designed with about
20 nucleotides complementary of the target sequence,
instead of the crRNA-tracrRNA complex, in the labora-
tory to use as a biotechnological tool. In these complexes,
the nuclease domains of the Cas protein have cleavage
activity, resulting in blunt or overhang on-target sequences
[11, 12]. Table 1 summarizes the three most applied types
of class II CRISPR—Cas systems [13—16].

Applications of CRISPR-Cas Systems
in COVID-19 Disease

Some aspects of the CRISPR system beyond genome
editing have been considered by researchers during this
course of the COVID-19 pandemic. In this review, we
screened research articles from PubMed and LitCovid for
CRISPR—Cas system application in SARS-CoV-2 using
““COVID-19 and CRISPR’’ as keywords for the period
2020 and 2021. We returned 290 articles and after delet-
ing articles that were unrelated, review, and preprint arti-
cles, we were left with 86 articles focusing on diagnosis,
anti-viral therapeutics, preclinical models, and genome-
wide screening. The percent distribution of the diagnosis
researches and the other categorized research articles is
presented via a pie diagram in Fig. 1.

Type Subtypes Nuclease domain

PAM/PFS

Cleavage activity Applications

11 (Cas9) 1I-A HNH and RuvC domains 3’ G-rich motif =~ dsDNA blunt cleavage activity  Diagnostic platforms
1I-B Genome-wide screening
II-C Animal model designing

V (Casl2)  V-A (Cas12a/Cpfl) RuvC and Nuc domains 5" T-rich motif =~ dsDNA overhang cleavage Diagnostic platforms
V-B (Cas12b/C2c1) RuvC domain activity and ssDNA collateral

cleavage activity

VI (Cas13) VI-A (Casl13a/C2c2) 2 HEPN domains 3'none G PFS  ssRNA overhang cleavage Diagnostic platforms

VI-D (Cas13d) None activity and ssRNA collateral ~ Anti-viral therapy

cleavage activity

PAM protospacer adjacent motif, PFS protospacer flanking site
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Fig.1 Diagram of published research articles related to CRISPR-
based studies for COVID-19

CRISPR-Based Diagnosis Assays

For most in vitro molecular diagnostic assays of infectious
agents, such as viruses, the target nucleic acid must first
be amplified. Thermocycling-based amplifications, namely,
polymerase chain reaction (PCR) and real-time-PCR meth-
ods, are the gold standard techniques. Also, isothermal-
based amplification methods, namely, loop-mediated iso-
thermal amplification (LAMP) and recombinase polymerase
amplification (RPA), are other available rapid nucleic acid
amplification tests. Parameters such as sensitivity, specific-
ity, efficiency, accuracy, simplicity, cost, and especially in
this case, the speed of reaction are significant criteria for
creating a suitable molecular diagnostic platform for identi-
fication of agents [17, 18]. The goal of designing diagnostic
platforms is receiving point-of-care (POC) methods, consid-
ering detection with the least tools and even outdoors away
from the laboratory. Therefore, simultaneous detection of
multiple agents in the shortest time is changing approach
from routine methods to novel methods [19, 20].

One of the new applications of the CRISPR—Cas system,
beyond genome editing, is the diagnosis of infectious and
non-infectious diseases. Since 2017 CRISPR-based diagno-
sis (CRISPR-DX) platforms based on nucleic acid detection
have been developed. The design of CRISPR-DX platforms
has been able to consider most of the necessary parameters
by incorporating other amplification and detection methods
to develop optimal systems with high performance [21]. To
date, there is an urgent need to develop new POC detec-
tion methods in the emerging condition of the COVID-19
pandemic. In 2020 the CRISPR-based detection systems for
SARS-CoV-2 have been able to receive the US food and
drug administration (FDA) emergency use authorization
(EUA) approval [22].

Due to the structure of the CRISPR—Cas system, design-
ing different and innovative CRISPR-based diagnostic tools
often considers the diversity in classes and types of Cas
nucleases. Cas subunit with their enzymatic RNase activity
properties along with crRNA can identify the target DNA or
RNA and make cleavage [23]. The most important classes
of this enzyme, applicable in detection, are class II (types
1I/Cas9, V/Casl2a/b, and VI/Cas13), with attomolar sen-
sitivity for detecting RNA or DNA viruses. Usually, using
each Cas protein type for virus genome detection should
combine with amplification methods, especially isother-
mal methods, to improve the target sample sequence. Then,
through the crRNA and Cas complex, the target sequence
can be identified more accurately with visual fluorescent-
based readout or lateral flow assay (LFA) in final detection
step [10, 24]. In cases with low viral RNA copy numbers, it
is difficult to interpret by visual detection. On the other hand,
there is a correlation between LFA signals and Ct values in
Real-Time PCR results. So, the visual results can be semi-
quantified through machine learning tools to enhance the
analytical sensitivity. There have been efforts to use smart-
phone applications for detection and quantification of POC
SARS-CoV-2 CRISPR-DX platforms by imaging [25]. In
fluorescent-based readouts using diode laser [26], capturing
of image by companion smart-phone application [27] and
3D printing instrument for helping smart-phones detection
[28] are used to develop the POC purposes.

For detecting the SARS-CoV-2 virus, different CRISPR-
based platforms are using the diverse Cas nuclease enzymes
listed in Table 2. The Cas9 endonuclease protein in combi-
nation with gRNA targets the dSDNA sequence. One of the
advantages of using the Cas9 type is the ability to identify
single-nucleotide polymorphisms that are useful for virus
genotyping as well as low-frequency gene mutations [29,
30]. This type of capability has enabled the Cas9 from
Campylobacter jejuni NCTC11168 (CjeCas9) to be used to
distinguish the SARS-CoV-2 and its D614G (Asp®'*— Gly)
variant with single-base resolution in patient samples [31].
Amplification-free electrochemical detection methods are
based on binding affinity between the dCas9 (dead activity-
Cas9) and the viral genome on graphene-based FET chips,
which also have the potential for SARS-CoV-2 detection
[32].

The first diagnostic platform to be designed based on
Cas12 was a DNA endonuclease-targeted CRISPR trans
reporter (DETECTR) for the detection of HPV in human
patient samples. In this platform, the crRNA-Cas12a com-
plex was used to bind and cleave the amplified virus genome
sequence. Collateral cleavage of a non-specific short ssDNA
sequence, which is a fluorophore quencher (FQ) labeled as
a reporter was used to visualize this binding by light emis-
sion [52]. The DETECTR platform has been redesigned
for SARS-CoV-2 detection from the extracted RNA of a
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Step I: Amplification
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Fig.2 An overview of CRISPR-based diagnostic assays with three
types of Cas enzymes; Cas9, Casl2, and Casl3 detections with
names of FELUDA, DETECTR, and SHERLOCK, respectively, after

respiratory swab, by lateral flow assay. The collaboration of
this method with reverse transcriptase-loop-mediated iso-
thermal amplification (RT-LAMP) to convert and amplify
RNA virus to DNA effectively increased the detection effi-
ciency [35]. The advantages of this method are laboratory
instrument independence and rapidness, along with accept-
able accuracy and specificity [28, 53]. Other DETECTR-like
platforms for COVID-19 are listed in Table 2.

The pioneer of the CRISPR-DX system is Specific High-
sensitivity Enzymatic Reporter unlocking (SHERLOCK)
that uses type VI/Cas13 for detection [54]. This platform
was designed to detect pathogens, including viruses, in

1Cas9 detection-based 1Ca512 detection-based l Casl13 detection-based
Biotinylated ./7000(,. DNA /POOK /S RNA A~ _~_
DNA £ i
Casl2-crRNA ssDNA reporters Casl13-crRNA - ssRNA reporters
Cas9 and FAM- complex | complex
labelled d
R tracrRNA ./ ” '//
= complex
2
g
g v v
] Binding to target DNA
% and activating Binding to target RNA
[~ v collateral cleavage and activating
¢ activity collateral cleavage
E_ i activity
2 X OO NE=2 0
RvA
. Binding to target
amplified biotinylated /
DNA S /7 Cleaved reporters
A / '/ Cleaved reporters ./' ./
lateral flow assa;
- y lateral flow assay OR Fluorescence-based assay Blue light
: o g
= ) anti-FAM
3 =t * antibody J _C!eaved
= 9 Biotin-FAM
z —» 2 — reporter Cleaved
- 2 Quencher- |
o F r Fluorescent
= ' Fluorophore o
& Sample flow Positive band Control band Anti- Sample fl Control band  Positive band anti- reporter s on
& streptavidin rabbit Antibody ample fow streptavidin  FAM antibody coated
coated coated coated

extraction of RNA of SARS-CoV-2, pass through three steps and can
be visualized through the lateral flow assay or fluorescence-based
assay

combination with reverse transcriptase-recombinase poly-
merase amplification (RT-RPA) and T7 transcription to
increase detection accuracy using a quenched fluorescent
ssRNA reporter suitable for visual or lateral flow read-
out [55]. This platform was successful in the diagnosis of
the SARS-CoV-2 virus during its pandemic. It is the first
CRISPR-based platform to be used on clinical samples with
the US FDA-EUA approval and has acceptable results com-
pared with other diagnostic methods, such as next-genera-
tion sequencing (NGS) and RT-PCR (q-PCR) [22, 49, 56].
Discrimination of the wild and mutated SARS-CoV-2, such
as D614G mutation with Cas13a-gRNA and Cas12a-gRNA
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CRISPR-based platforms, is valuable for monitoring of
epidemiological analyses and can improve the ability of
POC tests [57, 58]. Other notable CRISPR—Cas13-based
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platforms for SARS-CoV-2 virus detection are listed in

Table 2. Figure 2 shows the steps of the available three types
of CRISPR-DX platforms.
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«Fig.3 a Casl3-crRNA complex through variable delivery systems
(such as AAV delivery method) can target virus genes (such as
ORFlab, RdRp, S, and N genes) to degrade viral genome and block
genome expression of virus. b Production of humanized ACE2 mouse
model through the microinjection of CRISPR—Cas9 complex and
human ACE2 template sequence in mouse zygote to substitute mouse
ACE2 gene and express in the lung, intestine, and brain of a mouse
under its promoter. This humanized model is compared with a wild-
type mouse in SARS-CoV-2 infectious conditions. ¢ The pooled or
arrayed CRISPR genome-wide screening is done for analysis of top-
ranked gene clusters in the pathway of virus infection in host cells.
In this direction, designing of sgRNA library for targeting candidate
host cell gene to production of knocked out cells and challenging with
SARS-CoV-2 virus are done for determining of anti-viral and pro-
viral genes from sensitive and resistant cells

CRISPR-Based Therapeutics

Conventional therapies for treating viral diseases are usu-
ally based on preventing the virus infections by targeting
biomolecules in the entrance pathway up to proliferation.
In the emergence of viruses, the first step in anti-viral ther-
apy is drug repurposing to use existing drugs for the ben-
efit of treatment in the shortest possible time. The second
approach could be target-based drug designing by focus-
ing on the genomics and proteomics of the desired virus
[59, 60]. Based on these two approaches, drug candidates
for the treatment of SARS-CoV-2 virus infectious usually
focus on disruption of the enzymatic function of the virus
(especially RNA-dependent RNA polymerase), prevention
of virus endocytosis, blocking viral proteins (envelope,
membrane, nucleocapsid, and accessory proteins), helping
innate immunity or suppressing the excessive inflamma-
tory response, and prevention of SARS-CoV-2 replication
[61]. On the other hand, viruses that have new mutations
and cause pandemics usually cannot respond to old drugs
and vaccines. These limitations in the treatment and pre-
vention of the COVID-19 could be applied to other viruses
of the same family, such as SARS and MERS. Therefore,
under these conditions, there is an urgent need for new
therapies based on targeting the genomic sequences of the
virus. The disruption of gene function in anti-viral ther-
apy incorporates biotechnological tools, such as siRNA or
CRISPR-Cas system. One of the well-known applications
of the CRISPR-Cas system is the possibility of identifying
the DNA or RNA sequence of the virus to cut them and
destroy their function [62].

Related studies have suggested CRISPR an acceptable
candidate for targeting human pathogens such as HIV, hep-
atitis B virus (HBV), herpesviruses, human papillomavirus
(HPV), and JC virus (JCV) [63]. The Cas9 and Cas13 as
endonuclease enzyme subunits in the CRISPR system can
identify the DNA and RNA of viruses in infected mam-
malian cells. Studies have shown that Cas9 has a lower
cleavage efficacy for ssSRNA and also the ability to create

off-targets in the DNA sequence of virus-infected host
cells [15, 64].The CRISPR-Cas13 system is not depend-
ent on the detection of PAM and the crRNA targets ssSRNA
coding sequences of the virus without interfering with
the human transcriptome, causing sequence degradation,
interrupting gene expression, and eventually blocking viral
function [65]. Therefore, using CRISPR—Cas13 is superior
to CRISPR—Cas9 as an anti-viral programmable inhibition
system.

Prophylactic anti-viral CRISPR in human cells (PAC-
MAN), effectively can identify and degrade the virus
sequence and its mutants in the human lung epithelial
cells. The PAC-MAN system uses the class 2, type VI-D,
CRISPR-Cas13d system derived from Ruminococcus fla-
vefaciens XPD3002. PAC-MAN simultaneously identifies
more than 90% of all coronaviruses using a combination of
6 crRNAs by identifying protected regions (such as ORF1ab,
RdRp, and N genes) as well as detecting virus ssRNA in
their replication and transcription phases [66]. The com-
prehensive set of bioinformatics methods for receiving in
silico optimal crRNA candidates can improve the efficiency
of laboratory tests for combating SARS-CoV-2 in the least
time [67]. Besides in silico designing and human cell line
tests, using animal models will improve preclinical studies
with the simulation of respiratory infections in vivo and will
help to screen the safety and effectiveness of CRISPR-based
platforms for anti-viral approaches [68]. The advantages of
the CRISPR-based anti-viral systems are high flexibility in
identifying viral sequences, speed of detection, and direct-
ness against the virus [65, 66]. The Cas13d expression
vector could be transmitted via the adeno-associated virus-
packaging system (AAV delivery method) with high tropism
for respiratory tissues and expressed under the induction of
expression promoters in specific tissues, especially airway
cells [65]. The basis of the anti-viral CRISPR-based system
for SARS-CoV-2 is depicted in Fig. 3a.

CRISPR in preclinical Researches

Preclinical researches related to COVID-19 require suit-
able animal model that can be infected with the SARS-
CoV-2 virus and subsequently access mild-to-severe dis-
ease. As in human cells, the target cells in the selected
animal should possess ACE2 as the SARS-CoV-2-binding
receptor to let virus cell entrance. Animals such as ham-
sters, ferrets, African green monkeys, cynomolgus, and
rhesus macaques have similar human ACE2 receptors. For
extensive researches the best candidate is mice because
of reducing costs and increasing the number of animals
but mouse ACE2 has much lower binding affinity for the
viral spike protein, compared to its human counterpart.
This low binding affinity will develop a mild disease in
mice models that is not suitable for multi-aspect studies
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[69, 70]. The application of transgenic mice can solve this
problem by inserting the human ACE2 receptor gene into
the mouse embryo genome in an engineered manner that
will pass on to the next generation. In this case, human-
ized ACE2-incorporated mice will be more sensitive to
SARS-CoV-2 infection via intranasal inoculation. Notably,
the pathological outcomes and subsequent lung damages
will be similar to human infection [71]. In addition to the
biotechnology-based techniques used to produce transgene
mice, CRISPR technology could also insert the target
gene into the mouse genome by the knock-in process. For
COVID-19 preclinical studies, the CRISPR—Cas9 knock-in
technology can help the expression of the human ACE2
receptor in various mouse tissues. Humanized mice sen-
sitize to SARS-CoV-2 intranasal inoculation and intragas-
tric inoculation [72], which is depicted in Fig. 3b. The
production of humanized mice has facilitated anti-viral
therapeutic research, the development of vaccines, study-
ing virus transmission and pathogenesis, and screening
severe symptoms in COVID-19.

Genome-Wide Screening by CRISPR

Functional studies of genes via conditional mutagenesis in
mammalian cells have been considered for decades. Genome
engineering tools such as Cre-recombinase, RNAIi, and
designer nucleases such as ZFN and TALENs have been
used for forwarding genetic screening until 2012. The dis-
covery of the CRISPR—Cas system as a novel biotechnologi-
cal method of designer nucleases generation is an alternative
technique to overcome the limitations. One of the advan-
tages of genome-wide CRISPR screening is the designing
of sgRNA libraries to target thousands of genes simultane-
ously for pooled or arrayed screening and directly identify
the candidates of desired phenotype [73, 74]. In addition
to genome-wide mutagenesis through CRISPR knock-out
approach, this system is a suitable tool for insertion and
deletion of the target genes. Also, site-directed base editing
and up/down gene regulation via gene-specific transcription
factors can be done with the new modifications of CRISPR
system. CRISPRing has provided an opportunity to under-
stand the biology of mammalian cells related to diseases,
such as cancers and pathogen infectious, including viruses,
and designing the pharmacological studies through the crea-
tion of targeted mutant cell libraries [75, 76].

Usually the host genes that coordinate the virus entrance
and pathogenesis processes are unknown. The identification
of principal host genes in the viral infection, regulation, or
suppression pathway can provide a better understanding of
the virus function in the host cell and can help to find novel
potential therapeutic marks such as antagonist drugs and
design an appropriate vaccine. All of these studies in the

host cell lines can be done by CRISPR—Cas9 genome-wide
mutagenesis screening. Recently screening of the Norovi-
ruses, Zika virus, West Nile virus, and HIV in host cell lines
has been performed by CRISPRing [77-79].

The necessity to identify the pathogenesis of the SARS-
CoV-2 virus pandemic, new screening studies are extended
for revealing of viral entry and pathogenesis of host genes
through genome-wide pooled or array CRISPR libraries in
the appropriate cell lines. In these studies, the candidate host
genes are determined by systems biology approaches and
host—viral protein interactome [61]. The targeted sgRNA
libraries are designed for candidate host genes to produce
knock-out cell lines. These mutant cells will be challenged
by virus and finally, the sequencing of the target region
of the sgRNAs on mutant cell genome will determine the
causative genes of resistance and sensitivity [80-82]. The
process of the CRISPR genome-wide screening of SARS-
CoV-2 host cell is depicted in Fig. 3c. After knocking-out
steps the genes that make the virus-resistant cells are pro-
viral, and the genes that make the virus-sensitive cells are
anti-viral. By propagating resistant knock-out cells and
sequencing data analysis, anti-viral drugs would be des-
ignable based on these gene pathways [83]. In Table 3, the
CRISPR-based genome-wide screening of important cellular
pathways and processes to determine top-ranked resistant
and sensitive genes involved in SARS-CoV-2 infection is
reported. In some cases, the candidate small molecules that
mimic anti-viral gene pathways or blocking pro-viral gene
pathways have been specified. The studies show that due
to the lack of adequate knowledge about specific genetic
pathways involved in cytotoxicity and metabolism associated
with drug repurposing in SARS-CoV-2, research in this field
has begun by genome-wide CRISPR.

Conclusion

After less than two years of the COVID-19 pandemic,
CRISPR technology has shown some potential in all appli-
cations, from diagnosis to treatment of this disease. All of
these capabilities are as a result of CRISPR’s high sensi-
tivity, flexibility, adaptability, and developable platform. In
addition, based on new SARS-CoV-2 mutations and the need
for newly designed vaccines, we have to find other treatment
strategies like CRISPR technology for COVID-19 and other
future viral infections. In addition to all advantages of using
the CRISPR system in the detection of the virus variants,
producing a preclinical animal model for drug and vaccine
researches, its application in anti-viral therapeutics based
on eliminating the virus in the infectious cells, and studies
on genes involved in the disease; this system certainly has
shortcomings.
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One of the disadvantages of this system in diagnosis is
difficult to access results for clinicians in clinical studies, so
diagnostic protocols based on CRISPR-DX platforms should
be toward automation as well as better reading using the
mobile application with provision for offline or online mode.

In studies related to anti-viral applications of the CRISPR
system, the biggest limitation is the development of effective
and safe in vivo delivery methods. Therefore, more stud-
ies on the transfer of structures are needed. Also, sufficient
expression of CRISPR/Cas in the target cells has a direct
effect on achieving efficient viral inhibition through viral
genome cleavage.

Off-target effects and limited on-target activity as well
as low knock-out efficiency for designed sgRNAs are
other problems facing CRISPR genome-wide screening
researches, which require optimizing CRISPR systems
through structural engineering and more precise design of
sgRNAs for the target genome.
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