Electrocatalytic detection of l-cysteine using molybdenum POM doped-HKUST-1 metal organic frameworks

Tafadzwa W. Murinzi, Gareth M. Watkins, Munyaradzi Shumba and Tebello Nyokong

Abstract

Glass carbon electrodes (GCE) were modified with metal organic frameworks (MOFs) containing molybdenum polyoxometallates (Mo POMs) in a copper benzene tricarboxylate framework (HKUST-1). The Mo POMs were introduced via one-pot synthesis (Mo2) and post-synthetic modification (Mo1) techniques. The electrode modifiers were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermal analysis. The modified electrodes' oxidation capacity toward l-cysteine was studied. Mo POMs significantly improved electron transfer kinetics compared to the bare GCE. The best Mo POM doped electrode (Mo1-GCE) had a catalytic rate constant of 2.2×104 M-1 s-1 and a limit of detection of $3.07 \times 10-7$ M. Under the employed experimental conditions, the detection response for l-cysteine was very fast (within 0.1 s) for all the modified electrodes and selective toward l-cysteine in the presence of other amino acids.