
Application of ComputationalMethods
in Understanding Mutations in
Mycobacterium tuberculosis Drug
Resistance
Grace Mugumbate1*, Brilliant Nyathi 2, Albert Zindoga2 and Gadzikano Munyuki 2

1Department of Chemical Sciences, Midlands State University, Gweru, Zimbabwe, 2Department of Chemistry, Chinhoyi University
of Technology, Chinhoyi, Zimbabwe

The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) impedes the
End TB Strategy by the World Health Organization aiming for zero deaths, disease, and
suffering at the hands of tuberculosis (TB). Mutations within anti-TB drug targets play amajor
role in conferring drug resistance within Mtb; hence, computational methods and tools are
being used to understand the mechanisms by which they facilitate drug resistance. In this
article, computational techniques such as molecular docking and molecular dynamics are
applied to explore point mutations and their roles in affecting binding affinities for anti-TB
drugs, often times lowering the protein’s affinity for the drug. Advances and adoption of
computational techniques, chemoinformatics, and bioinformatics in molecular biosciences
and resources supporting machine learning techniques are in abundance, and this has seen
a spike in its use to predict mutations in Mtb. This article highlights the importance of
molecular modeling in deducing how point mutations in proteins confer resistance through
destabilizing binding sites of drugs and effectively inhibiting the drug action.
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INTRODUCTION

Drug resistance in tuberculosis chemotherapy is fast becoming a health crisis on a global scale.
The emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally
drug-resistant (TDR) strains of Mycobacterium tuberculosis (Mtb) has been observed as a result
of ineffective directly observed treatment short-course (DOTS) (Bihari et al., 2008; Whalen,
2006) among a myriad of other factors. MDR is due to resistance to at least one first-line drug
(Figure 1) including isoniazid (INH) which inhibits mycolic acid synthesis (Bollela et al., 2016)
and rifampicin (RIF) that inhibits RNA synthesis (Zhang et al., 2019). Other TB drugs facing
resistance include ethambutol (EMB) that targets the arabinogalactan synthesis (Zhang and
Yew, 2009), streptomycin (STR) that inhibits protein synthesis (Ruiz et al., 2002), and
pyrazinamide (PZA) that inhibits pantothenate and CoA synthesis, disrupting plasma
membrane and energy metabolism (Zhang et al., 2014).

Resistance to first-line drugs leads to the implementation of treatment regiments belonging to
the second-line drugs which are fluoroquinolones, kanamycin/amikacin and capreomycin/
viomycin, and ethionamide whose mechanisms of action involve introducing negative
supercoils in DNA molecules, inhibiting protein synthesis, and disrupting cell wall
biosynthesis by inhibiting mycolic acid synthesis, respectively (Table 1). XDR and TDR are,
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therefore, due to resistance to several second-line drugs
including fluoroquinolones in conjunction with MDR. For
better management of drug resistance and rapid detection of
resistance, knowledge of the mechanism of resistance at the

molecular level is extremely important for an effective treatment
regimen to be prescribed.

More often, drug resistance in Mtb is associated with mutations
within the drug targets; however, not all mutations within the

FIGURE 1 | Structures of first-line drugs and ethionamide, a second-line drug.

TABLE 1 | Drug targets and the mode of action (Louw et al., 2009; Zhang and Yew, 2009).

Drug Target Gene Drug mode of action

Ethambutol Arabinosyl transferase embCAB Inhibits arabinogalactan synthesis

Streptomycin Ribosomal protein S12 rpsL Inhibits protein synthesis
16S rRNA rrs
7-Methylguanosine methyltransferase gidB

Pyrazinamide Pyrazinamidase pncA Disrupts plasma membrane and energy metabolism (inhibits pantothenate and CoA
synthesis)

Rifampicin β subunit of RNA polymerase rpoB Inhibits RNA synthesis

Isoniazid Fatty acid enoyl acyl carrier protein
reductase A

InhA Inhibits mycolic acid synthesis

Catalase peroxidase katG
β-Ketoacyl-ACP synthase kasA
NADH dehydrogenase ndh
Alkyl hydroperoxidase reductase ahpC

Ethionamide Flavin monooxygenase ethA Disrupts cell wall biosynthesis by inhibition of mycolic acid synthesis
Fatty acid enoyl acyl carrier protein
reductase A

InhA

Transcriptional repressor ethR

Kanamycin/Amikacin 16S rRNA rrs Inhibits protein synthesis

Capreomycin/
Viomycin

rRNA methyltransferase tlyA
16S rRNA rrs

Fluoroquinolones DNA gyrase gyrA Introduces negative supercoils in DNA molecules
gyrB
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organism are associated with resistance. Drug resistance mechanisms
are driven mainly by single-nucleotide polymorphisms or other
polymorphisms resulting in the modification of drug targets
(Palomino and Martin, 2014). Therefore, understanding the
mechanism of action and resistance of the drugs is of paramount
importance. Of the first-line drugs, ethambutol, which is active
against fast-multiplying bacteria, disrupts the synthesis of
arabinogalactan in the cell wall by targeting the mycobacterial
arabinosyl transferase enzyme encoded by the gene embB,
encapsulated in the embCAB operon, and mutations in the
embB306 gene confers ethambutol resistance (Zhang and Yew,
2009). On the other hand, streptomycin, a drug active against
slow-growing bacteria, irreversibly binds to the 30S ribosome
subunit, blocking translation thereby inhibiting protein synthesis.
Chromosomally acquired streptomycin resistance is associated with
mutations in the rpsL, rrs, and gidB encoding for ribosomal protein
S12, 16S rRNA, and 7-methylguanosine methyl transferase,
respectively (Zhang and Yew, 2009). Similarly, resistance to
rifampicin, a key component in the first-line treatment of TB that
binds to the β subunit of RNA polymerase, has been linked to
mutations in a region of the 81 bp region of the rpoB gene.Whilst the
gene encodes for the β subunit of RNA polymerase, rifampicin
resistance is mostly due to mutations at positions 516, 526, and
531 (Goldstein, 2014; Uddin et al., 2020). This is achieved by
inhibition of elongation of the messenger RNA, which interferes
with transcription (Uddin et al., 2020).

Pyrazinamide is also a key antituberculosis (TB) drug that
substantially enhances the activity of novel agents bedaquiline
(BDQ) and pretomanid (PA50) in murine models of TB. A vital
attribute of this prodrug is its ability to inhibit semidormant bacteria in
acidic environments. In its activity, the prodrug is converted by
pyrazinamidase/nicotinamidase to its active form, pyrazinoic acid
which inhibits membrane transport by disrupting the bacterial
membrane energetics. Resistance to pyrazinamide is mainly
characterized by mutations clustered at positions 3–17, 61–85, and
132–142 in the pncA gene that codes for mycobacterial enzyme
pyrazinamidase (PZase) (Zhang et al., 2014). The association of
multiple mutations throughout the pncA gene with PZA resistance
makes it difficult to develop a test for detecting PZA resistance
(Piersimoni et al., 2013). In most instances, molecular methods are
applied to investigate PZA resistance by screening mutations in pncA
genes in distinct epidemiological regions offering a much more rapid
alternative method compared to that of conventional bacteriology
(Khan et al., 2019). Miotto identified 280 mutations in 1950 clinical
strains (Miotto et al., 2014), which were categorized into four groups:
very high–confidence resistance mutations, high-confidence resistance
mutations, mutations with an unclear role, and mutations not
associated with phenotypic resistance based on the confidence level.

Isoniazid and ethionamide are effective drugs for the treatment of
TB; however, several clinical MDR-TB strains have shown high levels
of resistance (Machado et al., 2012). Structurally, INH and ETH are
highly similar, both containing the pyridine ring; however, ETH is a
second-line drug primarily used to treatMDR-TB, and just like INH, it
is a prodrug that requires metabolic activation (DeBarber et al., 2000).
Although the active metabolites of both drugs inhibit an NADH-enoyl
acyl protein reductase, InhA, the drugs have independent activation
pathways. The validated drug target InhA is an enzyme involved in

fatty acid biosynthesis II, which is important in the bio-production of
mycolic acids. These long-chain fatty acids are responsible for the
unique impermeable nature of theMycobacterium tuberculosis cell wall
(Dover et al., 2004; Timmins and Voja, 2006).

INH is activated by the catalase-peroxidase KatG to INH-
NAD and INH-NADP adducts that effectively inhibit InhA
(Timmins and Voja, 2006). Resistance to INH has been
attributed to mutations or deletion in the active site of the
katG gene, which encodes the enzyme, KatG (Hameed et al.,
2018), at position S315 and position 15 in the InhA promoter
region. Also, mutations in ahpC, kasA, and ndh encoding for alkyl
hydroperoxidase reductase, β-ketoacyl ACP synthase, and
NADH dehydrogenase, respectively, are associated with INH
resistance (Nayak et al., 2017). Cross-resistance occurs
between INH and its structural analog, and ETH has been
attributed to mutations in the InhA promoter.

On the contrary, ETH is activated by the enzyme EthA
encoded by the gene Rv3854c to the toxic S-oxide then to 2-
ethyl-4-aminopyrimidine (DeBarber et al., 2000; Baulard et al.,
2000). The transcription of the FAD-containing monooxygenase,
EthA, is controlled by another gene ethR that encodes the protein,
EthR. Earlier studies of the resistance mechanism of ethionamide
revealed that an increase in the amount of EthR, a member of the
TetR repressors, reduces the amount of EthA and results in
ethionamide resistance by mycobacterium tuberculosis
(DeBarber et al., 2000; Baulard, 2000). Mutation studies on
MDR-TB isolates revealed the presence of EthR F110L
mutants implicated in resistance to ETH. The residue F110
occupies a central position in the long cylindrical and
hydrophobic ligand-binding site of EthR.

Similar to INH, ethionamide (ETH) is a second-line prodrug
activated by the monooxygenase encoded by the ethA gene. Once
activated, it forms an adduct with NAD, which inhibits the enzyme
enoyl-ACP reductase, thus disrupting mycolic acid synthesis.
Transcription of the monooxygenase, ethA is negatively regulated
by ethR; hence, allosteric inhibition of ethR would enhance activation
of ETH and computer some of the mutation processes.

The advances in computational techniques and expansions in
bioinformatics and chemoinformatics have brought a sigh of
relief in the study of mutations and provided a rapid drug
susceptibility testing important in the detection and control of
MDR/XDR TB (Shinnick et al., 2005). Therefore, in this article,
we analyze the effective application of computational techniques
and tools in the study and understanding of molecular target
mutations in conferring drug resistance to first-line drugs and
also analyze how we are applying these methods to identify
inhibitors that would circumvent resistance in ethR, a gene
implicated in the resistance of ethionamide as well as highlight
prospects in fast and cost-effective advances to understand drug
resistance of antituberculosis drugs.

METHOD

To give a detailed account of how the computational techniques
have been applied in the study of the contributions of mutations
to the emergence of drug-resistant Mycobacterium tuberculosis,

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 6438493

Mugumbate et al. Drug resistant Mycobacterium tuberculosis

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


an extensive literature search was performed. A description of the
mechanisms of action of the first-line drugs rifampicin and
isoniazid as well as ethionamide, a second-line drug is given.
An analysis of the common computational methods used to study
the mutations in relevant genes for each drug was performed.
Lastly, a detailed account of the importance of F110 in ethR, a
transcription regulator implicated in the resistance of
ethionamide, is presented. Modeling of the proteome for
mycobacteria, and identification of the hotspots and
druggability of the proteins are given.

Computational Approaches
A variety of computational techniques that include comparative
(homology) modeling, molecular dynamics, protein–ligand
docking, and structure-based optimization of ligands (Figure 2)
have been successfully used to study the impact of mutations at
atomic levels on protein–ligand binding and interactions and how
they negatively affect ligand affinity by the mutant proteins (Phelan
et al., 2016; Zhang et al., 2019; Jamal et al., 2020). Advanced
approaches that include machine learning alongside artificial
intelligence, bioinformatics, and cheminformatics databases have
also been successfully used to buildmodels and tools that can predict
mutation and determine their capabilities in conferring resistance
(Jamal et al., 2020; Ghosh et al., 2020; Sandgren et al., 2009).

Effect of Mutation in rpoB on Protein–RIF
Interactions
Pang and co-workers approached RIF mutations with a
computational approach. They used homology modeling to
generate a three-dimensional structure of the wild type rpoB
based on the crystal structure of Thermus aquaticus (Taq) core
RNAP complexed with RIF. Discovery Studio 3.1 was used for

this structural analysis exercise. The protein was modeled using a
Build Homology module within the Protein Data Bank; a loop
refinement module fromModeller was used to perform structural
refinements, and energy minimizations were performed with the
Smart Minimizer algorithm. The Build Mutants module was used
for building mutants Ser531Leu, His526Asp, His526Gly,
His526Leu, His526Arg, and Leu533Pro, and the Align and
Superimpose Proteins module was used to compare the wild-
type and mutant structures. Their study sought to evaluate the
effects of mutating specific amino acid residues involved in the
binding of RIF on protein–ligand interactions. The mutated
protein–ligand interactions are evaluated subsequently using
the Analyze Ligand Interactions and Structure Monitor
module. They discovered that the mutated target protein had
some level of resistance for RIF as it showed a decrease in its
binding affinity. Mutations in His526Asp and Ser531Leu
significantly reduced the affinity of rpoB for RIF by
introducing charge repulsion and conformational changes in
rpoB, respectively. The other strains with mutations
His526Gly, His526Leu, His526Arg, and Leu533Pro exhibited
low-level resistance (Pang et al., 2013). On the other hand,
Zhang approached this challenge in exploring resistance
mechanisms by combining the molecular dynamics simulation,
molecular mechanics generalized-Born surface area calculation,
dynamic network analysis, and residue interaction network
analysis. Molecular dynamics simulations were all performed
with the Amber14 package, and it was observed that the
binding free energies of RIF with the three mutants H451D/Y/
R decreased with molecular mechanics generalized-Born surface
area calculations. Dynamic network analysis and residue
interaction network analysis indicated increased flexibility
within the binding pocket due to mutation of residue 451
which in turn weakened Q438, F439, M440, D441, and S447

FIGURE 2 | Common computational approaches applied to study the effect of mutations on protein–ligand interactions.
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residue interactions within the binding pocket. Such flexibility
allowed for residues meant that a hydrogen bond to RIF was lost,
thus accounting for decreased RIF binding in the mutant RNA
polymerase. Changes within the binding pocket in the H451R
mutant are extensive, giving too much freedom for RIF to move
within the pocket (Zhang et al., 2019). Therefore, H451D/Y/R
mutations increased the flexibility of the active pocket which in
turn weakened the binding ability of Mtb RNA polymerase with
RIF. Thus, the H451D/Y/R mutations weaken the interaction of
the mutated residue with its adjacent residues. In similar work
involving homology modeling of rpoB and docking calculations
of RIF, Kumar and Jena have shown that two mutants S450L and
H445Y exhibit low binding affinity toward the wild type rpoB,
which has high affinity for the RIF molecule (Kumar and Jena,
2014).

Singh and co-workers investigated mutations of H451. The
Mtb rpoB sequence was obtained from UniProt, the structure was
built through comparative modeling with Modeller, and it was
mutated computationally at position 451 using PyMol.
GROMACS version 5.0 molecular dynamics simulation was
performed on all the structures to obtain stable structures at
40ns. On the stable structures, RIF was docked onto them with
AutoDock 4.2, and ligand–RIF complexes were subjected to
molecular dynamics and molecular mechanics for estimation
of free binding energies in wild-type and mutant systems.
Resistance in the mutants arises due to changes within the
binding pocket when polar and hydrophobic amino acids were
replaced, which affected packing and folding in the vicinity, and
relocation of the binding site itself rendering the RNA exit
channel inaccessible to the drug (Singh et al., 2017).

The aforementioned studies on RIF resistance all have a
consensus on the conference of resistance by the mutations in
the target protein. They showed that mutations in rpoB cause
structural changes within the binding pocket and its vicinity.
They also indicated that interactions between the binding pocket
residues are changed as a result of a mutation within the binding
pocket and its vicinity greatly affecting the location and structure
of the binding pocket. Most of these studies concluded that
mutations that cause extensive structural changes will affect
the way RIF sits in the binding pocket and increase freedom
for the ligand in the pocket, which greatly decreases its affinity.
Mutations that specifically occur within the binding pocket starve
the RIF ligands of residues that contribute to a better binding
affinity.

Effect of Mutation in InhA, and katG on INH
Binding
Computational studies of INH resistance in Mtb have been
extensively studied (Jena et al., 2014). INH is activated by
katG and converted to an active intermediate displaying
antimycobacterial properties; in the presence of NADH, an
INH-NAD adduct is formed. It is the adduct that inhibits
InhA (2-trans-enoyl-acyl carrier protein reductase), blocking
the synthesis of mycolic acid (Dookie et al., 2018). In one
study, homology modeling was employed to predict the 3D
structure of Mtb UDP-galactopyranose mutase (Glf) and

NADH Dehydrogenase (Ndh) with Modeller9v14, and the
sequence in the FASTA format was obtained from the NCBI
database. The NAD binder server was used in the identification of
the binding site; docking studies and visualization were
performed with AutoDock Vina Tool 1.5.4 and Pymol,
respectively. FADH2 and NADH were both found to have a
high affinity for Glf; thus, overexpression of Glf utilizes more
NADH reducing its concentration. This results in decreased
INH-NAD adduct formation thereby causing INH resistance
(Nayak et al., 2017)

In another study, on the influence of mutation in INH, katG
mutations S315T/S315N were modeled with Modeller9v10 and
compared with the wild-type katG. It was observed that INH was
forming a hydrogen bond with the mutant katG which hindered
radical formation. AutoDock Tool 1.5.4 docking calculation
indicated INH-NAD is more effective at inhibiting InhA
compared to INH (Jena et al., 2014). The katG mutation
S315T was computationally observed to decrease the flexibility
of binding site residues, and katG mutants at His276Met,
Gln295His, and Ser315Thr decreased the stability and
flexibility of the mutant protein associated with INH
resistance. Mutation of the arylamine N-acetyltransferase
(NAT) enzyme increases the stability and catalytic activity of
the enzyme making the NAT-INH interaction ineffective.
Mutations in the ahpC result in overexpression of the protein,
which is a compensatory mechanism for loss of activity due to the
katGmutation; thus, the ability to defend against oxidative stress
is maintained within the system (Jena and Wankhade, 2016;
Waghmare, and Harinath, 2016). Just as in the RIF studies,
conformational changes and pocket flexibility changes greatly
affect the atomic-level interactions between the target protein and
the drug compound, and the trend shows a decreased affinity for
the drug by mutant protein targets.

Other Studies on the Effect of Mutation Mtb
Drug Resistance
Deedler applied machine learning approaches toMtb isolates that
had undergone whole-genome sequencing. Nonparametric
classification tree and gradient-boosted tree models were used
to predict drug resistance alongside uncovering any associated
new mutations. Resistance markers to drugs other than the drug
of interest was used in fitting separate drug models for each drug
based on the presence and absence of the co-occurrent resistance
markers. Predictive performance testing was performed alongside
laboratory drug-susceptibility testing. The performance was
highest for resistance to first-line drugs, amikacin, kanamycin,
ciprofloxacin, moxifloxacin, and multidrug-resistant
tuberculosis. The inclusion of resistance markers led to
improved results (Deelder et al., 2019).

In a bid to understand the molecular consequences of
polymorphisms within loci associated with antituberculosis
drugs, Portelli and co-workers employed computational
methods to quantify point mutations in conferring resistance.
Homology models of target proteins were built with UCSF
Chimera 1.1, and protein–ligand docking and protein–ligand
interactions were carried out with GLIDE and Arpeggio,
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respectively. Portelli et al., 2018 concluded that mutational effects
are mostly imparted via steric or electrostatic changes within the
protein, leading to functional changes and affecting target–drug
interactions. They also noted that most phenotypically resistant
mutations act allosterically, and the introduction of variants
affects the drug–protein complex stability, leading to
resistance. Frequently occurring mutations do not confer
extreme changes in parameters; the protein retains its
functionality, but the drug–protein complex is weakened.
Mildly stabilizing mutations may confer local fitness
advantages. Drug-resistant mutations within the protein are
enhanced while maintaining stability within the protein
function. It was also concluded that concurrent mutations in
close topological proximity enable localized effects of the
mutation, and their combination with external mutations
ensures different mechanisms that lead to drug resistance.

Nakatani and Helen, 2017 predicted that the alr M319T
mutation observed in an XDR strain of Mtb would likely
confer resistance to D-cycloserine (DSC) as it had been noted
that the acquisition of this mutation occurred with treatment of
DSC suggesting that the mutation is sufficient and necessary to
confer resistance. Molecular modeling of the C-8T, M319T,
Y364D, and R373L mutations provided insights into how
resistance is conferred upon treatment with DSC. DSC
covalently binds to an alr cofactor pyridoxal 5′-phosphate
(PLP); this act irreversibly inhibits alr through disruption of
the alr-PLP covalent bond (Fenn et al., 2003). A generated model
ofMtb, alr, and DSC highlighted the residues 319 and 364 located
directly in the active site. A mutation to aspartic acid at residue
364 introduced a shorter negatively charged side chain. Such a
change affects the positioning of the phosphate moiety in PLP,
potentially affecting PLP orientation in the active site. The
location of the residue 319 mutation could alter the
interactions with 364, likely affecting DSC inhibition. Alr
functions as a homodimer, and the R373L mutation is not
located directly in the active site; however, it is close to M319
and D320 and the dimer interface. Such a mutation is most likely
going to disrupt molecular interactions at the dimer interface and
greatly destabilizing the DSC binding site. This study was
strategic to the pharmaceutical sector in 2015 amidst a Global
Drug Facility declaration of a price reduction of the DSC drug.
Understanding the resistance mechanisms was important for
facilitating phenotypic and genotypic drug susceptibility
testing (Stop, 2015).

Malik et al. (2012) provided insights into fluoroquinolone
resistance through functional genetic analyses and structural
modeling techniques. Crystal structures of the N-terminal and
C-terminal domains for gyrA and gyrB were superimposed on the
crystal structure of the complex of Streptococcus pneumoniae
gyrase with a DNA substrate and levofloxacin, all obtained from
the Protein Data Bank using the tool Coot (Emsley and Kevin,
2004). This study highlights that gyrB mutations M330I, V340L,
R485C, D500A, D533A, A543T, A543V, and T546M are not
sufficient to confer drug resistance. N538D, E540V, and R485C +
T539N mutations did confer resistance to all fluoroquinolones
whilst N538K and E540D conferred resistance to moxifloxacin
only, and D500H and D500N mutations conferred resistance

only to levofloxacin and ofloxacin. The importance of this study
was in explaining minimum inhibitory concentrations as
observed in experimental work; molecular modeling explained
how resistance came about to be through a 3D spatial orientation
of substitute residues in the mutant proteins.

Effect of Mutation on ethR-Ligand Binding
Affinity
Resistance to ETH has been linked to mutations in the ethR, ethA,
and inhA genes (Hameed et al., 2018) that collectively play crucial
roles in the activity of the drug. As a regulator, the N-terminus
helix-turn-helix (HTH) domains of the dimeric EthR bind DNA
sequences responsible for the transcription of EthA and suppress
its expression (Wolff and Nguyen, 2012). This process is
controlled by small–molecular weight ligands that bind to the
allosteric binding pocket of EthR located in the C-terminal end
(Mugumbate et al., 2015). Binding of the ligands induces
molecular conformational changes that increase the distances
between DNA binding domains of the enzyme, inhibit DNA
binding, and hence increase the transcription of EthA. For this
reason, EthR has been validated as a suitable drug target for a new
collection of antituberculosis compounds that would boost the
activity of ETH. Targeting the resistance pathway of
antituberculosis drugs has long been proposed (Wolff and
Nguyen, 2012); therefore, independent research groups have
deposited the apo and bound structures of EthR into the
Protein Data Bank (PDB, https://www.rcsb.org/). These
structures reveal that the protein is characterized by a long
hydrophobic and promiscuous pocket that binds to
structurally diverse small molecules like dioxane and long
molecular chains with more than 30 atoms. The residue F110
is centrally positioned in the binding pocket with its aromatic side
chain strategically positioned to participate in protein–ligand
interactions (Figure 3).

In a previous study (Bishi, et al.), we carried out docking
calculations of a Maybridge dataset containing more than
200 drug-like compounds to investigate binding modes and
protein–ligand interactions. The results indicated that F110
played a crucial role in ligand binding, supporting the
observation that F110L drastically reduces ligand affinity
(Brossier et al., 2011). Most ligands were stabilized by a
cascade of pi–pi interactions, where F110 played a central role
by linking pi–pi interactions from the ligand to Phe114 (Figure 3)
in a way that will stabilize the bound ligand and increase ligand
affinity. This implies that the F110L mutation disrupts the pi–pi
cascade and reduces the ligand–binding affinity.

Application of Machine Learning and
Artificial Intelligence Approaches
Bioinformatics was employed for studies concerned with
mutations focusing on Mtb. Ghosh and co-workers developed
a Drug Resistance–Associated Genes database (DRAGdb) which
is a repository of mutational data of drug resistance–associated
genes (DRAGs) across ESKAPE (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
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baumannii, Pseudomonas aeruginosa, and Enterobacter spp.).
Homoplasy is observed in six genes namely gidB, gyrA, gyrB,
rpoB, rpsL, and rrswithmutations related to drug resistance being
observed at the codon level. A single-nucleotide mutation that
was associated with resistance to amikacin, gentamicin,
rifampicin, and vancomycin in Staphylococcus aureus was an
indication of pleiotropy. The database compiles Mtb drug-
resistance genes across bacterial species allowing for
homoplasy and pleiotropy identification in genes (Ghosh et al.,
2020).

In their recent efforts, Jamal and co-workers developed
machine learning algorithms alongside artificial intelligence to
study and predict resistance in the genes rpoB, inhA, katG, pncA,
gyrA, and gyrB for the drugs rifampicin, isoniazid, pyrazinamide,
and fluoroquinolones. Machine learning algorithms naïve Bayes,
k nearest neighbor, support vector machine, and artificial neural
network were used to build the prediction models. Further
molecular docking and molecular dynamics simulations were
carried out on predicted resistance causing mutant proteins and
their wild-type counterparts. This study evaluated protein
conformation and its impact to confirm the observed
phenotype (Jamal et al., 2020).

DISCUSSION

The application of machine learning and artificial intelligence in
mutation studies is a fast-growing trend in computational
research. At the center of it all, bioinformatics and
cheminformatics databases are contributing a lot of
information that is needed by machine learning algorithms to
predict drug resistance–conferring mutations. Information was
gathered across species in the experimental work, where the
previously mentioned mutations and their influence on drug

resistance were observed in detail, and the lack of hereafter is used
to train machine learning algorithms in identifying possible novel
mutations that might occur and probe their potential in
conferring resistance. Usage of multiple layers or algorithms
(deep learning) and artificial intelligence has greatly improved
the accuracy of drug resistance andmutation prediction tools that
have been made available to researchers (Deelder et al., 2019;
Jamal et al., 2020).

Structure-guided drug discovery has lately become paramount
to combat the emergence of Mtb drug-resistant strains which
pose a concern to global public health. The rapid expansion of
genome sequencing and pathway annotations has shown a
positive impact on the progress of drug discovery.
Computational tools have been developed to address the effect
of mutations on the structure and function of proteins. The
mutation cutoff scanning matrix (mCSM) is a machine
learning approach which predicts the structural and functional
effects of mutations on the target proteins. Its variants are capable
of predicting the effects of mutations on protein stability,
protein–protein interaction, and protein–ligand interactions
(Pandurangan and Blundell 2020). EnCOM and FoldX are
tools that are capable of predicting the effects of mutations on
flexible protein conformations (Schymkowitz et al., 2005;
Frappier et al., 2015). Rapid assessment of many mutations
that are difficult to access with experimental methods has been
made possible through predictive learning with machine learning
algorithms (Waman et al., 2019).

Machine learning techniques have also been developed to
address the need to improve TB resistance prediction in less-
studied drugs. Rapid detection of antimicrobial resistance is vital
in the prevention of existing drug resistance amplification, given
that resistance markers are known; machine learning techniques
are capable of timely prediction of resistance for a givenMtb drug.
Machine learning methods are capable of ranking mutations

FIGURE 3 | The residue F110 facilitates the pi–pi cascade (grey rings) between aromatic residues in the binding pocket of EthR (yellow) and the ligand (purple),
which later translates into a structural modification of the HTH motif and inhibition of DNA binding. Analysis of the interactions was performed using Aperggio (http://
bleoberis.bioc.cam.ac.uk/arpeggioweb/) and viewed using PyMol.
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regarded as important and mutations from other genes associated
with resistance to other drugs; this reflects on multidrug
resistance from taking second-line drugs after taking first-line
drugs, which is a huge advantage over experimental methods
(Kouchaki et al., 2019).

DeepAMR has been developed with the task of identifying
co-occurrent resistance within anti-TB drugs. This machine
learning technique had a high performance with mean
AUROC (Area Under the Receiver Operating Characteristics)
from 94.4 to 98.7% for predicting resistance to four first-line
drugs, RIF, EMB, INH, and PZA multi-drug resistant TB
(MDR-TB) and pan-susceptible TB (PANS-TB: MTB that is
susceptible to all four first-line anti-TB drugs). DeepAMR
achieved its best mean sensitivity of 94.3, 91.5, 87.3, and
96.3% for INH, EMB, PZA, and MDR-TB, respectively.
High-performance machine learning models have made the
predictions of co-occurrent drug resistance to be performed
timely and prevented amplification of existing resistance (Yang
et al., 2019).

The use of machine learning and artificial intelligence makes
them possible to identify novel resistance markers which are very
difficult and costly to investigate with experimental methods. The
timely and rapid prediction of drug resistance has made it
possible for drugs to be returned to the discovery pipeline for
optimization in a structure-guided drug design approach. To this
end, the application of these techniques makes it possible for

scientists to comprehensively study the protein–drug interactions
at very little cost and shorter time frames.

Proposed Computational Protocol
The Application of computational tools (Table 2) in
understanding mutations that confer drug resistance in
Mycobacterium tuberculosis still require a canonization of
the process for a standard result output. Initially, 3D
structures of drug targets are obtained from the Protein
Data Bank followed by point mutations which may be
performed by changing an amino acid in a protein sequence
with Pymol (Figure 4). In the absence of a 3D structure, the
primary sequence of the protein is obtained from UniProt (a
freely accessible database of protein sequences and functional
information). 3D structures are modeled through a process
known as homology/comparative modeling of proteins with a
standalone program such as Modeller or, alternatively, an
online server such as SWISS-MODEL (expasy.org).
Molecular dynamics simulations are performed for energy
minimizations of the wild-type and mutant drug targets
obtaining the most stable protein structures; standalone
programs such as GROMACS and Amber are used for
performing the task (Singh et al., 2017; Zhang et al., 2019).
In computational chemistry, energy minimizations which may
also be referred to as geometry optimization entail the
exploration of the conformational space for a collection of

FIGURE 4 | Proposed protocol for studying the effect of mutations on protein–ligand interaction.
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atoms to find a proper molecular arrangement in space which
is energy favorable and stable; it is also referred to as the global
energy minimum (Jabeen et al., 2019). The resultant structures
are then subjected to molecular docking, where the position of
the ligand when bound to a protein receptor is predicted for
the drug’s wild type and mutated targets. AutoDockTools and
Glide among other standalone software packages may be used
for this task (Kumar and Jena 2014; Jamal et al., 2020).
Protein–ligand complex structures may also undergo energy
minimization with molecular dynamics (Kumar and Jena,
2014; Portelli et al., 2018). In the presence of a 3D structure
complexed with the preferred drug, molecular mechanics is
employed to probe free binding energies and compare
protein–ligand complexes for wild-type and mutated drug
targets (Zhang et al., 2019). Recent trends that are being
explored in the field of computational work include the
usage of machine learning algorithms to build prediction
tools (Lee et al., 2020). Studies that make use of
mathematical models alongside bioinformatics for drug
resistance mutations have also been reported (Fonseca et al.,
2015). There has also been an exploration of artificial
intelligence alongside machine learning algorithms for drug
resistance mutation predictive tests (Deelder et al., 2019).

CONCLUDING REMARKS

With the increase in the number of drug-resistant and
multidrug-resistant strains of Mtb, a need has arisen for
techniques that are rapid for extensive studies of the
previously mentioned mutations. Computational methods

(Figure 4) present us with the opportunity to rapidly carry
out these studies in silico with outputs comparable with
experimental work at high confidence at even lower costs.
Such methods have been extensively employed in exploring
drug resistance in rifampicin, isoniazid, and ethionamide with
the findings correlating to what is observed in experimental
work; structural changes within the mutant protein drastically
reduce protein–ligand binding affinity.

Machine learning and artificial intelligence have brought about
massive changes and advancements in studying mutations and
drug resistance in Mtb and other diseases. These techniques have
made it possible to identify resistance markers within the whole
genome Muzondiwa et al., 2020, to predict drug resistance for a
given molecule, and to predict co-occurrent drug resistance
between two or more drugs. The techniques are driven by big
data (Table 3), and to that effect, smaller specific repositories/
databases (Drug Resistance–Associated Genes database) have
been created for the sole purpose of helping researchers who
are studying mutations. Computational tools have also been
created for the identification of resistance markers and
prediction of drug resistance (DeepAMR). Predictive learning
makes it possible for scientists to identify potentially unwanted
drug characteristics that may not be picked up with experimental
methods, greatly reducing the risk for drug failure and saving time
and money in the process.

AUTHOR CONTRIBUTIONS

BN and AM wrote the manuscript, and GrM and GaM were
involved in concept development and editing the manuscript.

TABLE 2 | Computational tools used in the study of mutations.

Computational tool Use References

AutoDock Molecular docking and visualization Morris et al. (2009)
Glide Molecular docking and visualization Friesner and Mainz (2006)
Pymol Molecular visualization DeLano (2002)
Gromacs Molecular dynamics simulations Van Der Spoel et al. (2005)
Amber Molecular dynamics simulations Case et al. (2005)
Modeller Homology or comparative modeling of protein 3D structures Webb and Sali (2016)
Discovery Studio Molecular visualization Studio (2008)
Arpeggio A web server for calculating and visualizing interatomic interactions in protein structures Jubb et al. (2017)
UCSF Chimera Interactive visualization and analysis of molecular structures and related data Pettersen et al. (2004)
DeepAMR Predicting co-occurrent resistance of Mycobacterium tuberculosis Yang et al. (2019)
EnCom Predicting the effects of mutations on flexible protein conformations Frappier et al. (2015)
FoldX Schymkowitz et al. (2005)

TABLE 3 | Databases used alongside computational packages.

Database Information contained References

UniProt Protein sequence and functional information Consortium (2015)
Protein Databank Protein 3D Structures Berman et al. (2000)
DRAGdb Mutational data of drug resistance–associated genes Ghosh et al. (2020)
NCBI Biological data and small-molecule database Wheeler et al. (2006)
ChEMBL Binding, functional, and ADMET information for a large number of drug-like bioactive compounds Gaulton and LouisaBellis (2012)
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