ABSTRACT

. Electrocatalytic behaviour of graphene oxide nanosheets (GONS) and cobalt oxide nanoparticles (Co₃O₄**NP**s) composite modified glassy carbon based sensor for 2,4 dichlorophenol (2,4 DCP) is investigated in this work. The GONS and Co₃O₄**NP**s were successfully synthesised and characterised by Fourier Transform Infrared Red (FTIR) spectroscopy, UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray (EDX) spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The electrode surface area and surface coverage were 0.13 cm² and 1.31 × 10⁻¹² mol cm⁻² respectively after modification with GONS/Co₃O₄**NP**s composite. The modified electrode had an electro-oxidation catalytic rate constant, *k*, of 3.6 × 10⁶ M⁻¹ s⁻¹ and limit of detection of 3.5 × 10⁻⁷ M for the same test analyte. The electrode showed good reproducibility and an appreciably low oxidation potential (0.8 V) for 2,4-DCP.