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Abstract
Understanding the drivers of habitat use and the suitability of landscape patches by invasive insect species is crucial in their
control and management. This simplifies the comprehension of the processes driving invasive insect population dynamics, their
functioning, and potential disturbance within their introduced ecosystems. The whitefly, Bemisia tabaci (Gennadius, 1889), is
ranked among the world’s 100 most invasive insect pests and is a major threat to many important cash and staple food crops. In
this study, we identified levels and areas at risk of the invasive B. tabaci at a landscape scale in Kenya using elevation, land
surface temperature, land cover, rainfall, and temperature of the present and future (the year 2050 of the community climate
systemmodel version 4 (CCSM4)), and using a maximum entropy (MaxEnt) model. Our results show that ~14% of Kenya’s land
area is currently at risk of B. tabaci invasion. This area is likely to increase to 15% and 16% because of climate change using the
representative concentration pathways (RCP) i.e. RCP 2.6 and RCP 8.5 of the year 2050, respectively. Land cover, particularly
croplands, provided the highest permutation importance together with precipitation variables in determining the occurrence of the
pest. A wide preference range within elevation, precipitation, temperature, and plant hosts was observed suggesting a great
potential for B. tabaci to establish in many areas in Kenya and potentially in other countries with similar conditions in Africa.
However, the predicted increases in global temperature could reduce the pest’s preferred environment, but this also imposes
limitations on the productivity of many of its host crops. Therefore, our results can be used in adaptive management to control the
pest and to prevent the introduction and spread of B. tabaci in areas where it is yet to establish.

Keywords Biogeography . Climate change . Ecological niche . Entomology . Invasive species

Introduction

The Whitefly, Bemisia tabaci (Gennadius, 1889) (Hemiptera:
Aleyrodidae) is an insect pest of global importance that occurs
widely in many countries, including Kenya (CABI 2020).
Many studies have established that B. tabaci can survive on
more than 600 different plant species making it one of the
most invasive and devastating insect pests of field and horti-
cultural crops (Kumar et al. 2019; Parry et al. 2020). Early
research has also shown that the pest has the potential to attack
its host and transmit several plant viruses that cause diseases
to some of the most important staple and ornamental crops
(Stansly et al. 2010; Bradshaw et al. 2019; Kanakala and
Ghanim 2019; CABI 2020; Kriticos et al. 2020). In Africa,
the insect is known to cause crop (e.g. cassava, cotton, sweet
potato, tobacco, watermelon) losses of up to 100%, threaten-
ing livelihoods of more than 2 million households in sub-
Saharan Africa (SSA: Gangwar and Charu 2018).
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The pest status of B. tabaci insects is complex because the
assessment of the mitochondrial cytochrome oxidase 1
(mtCO1) gene shows that B. tabaci is a complex of 11 genetic
groups (CABI 2020). These genetic groups are composed of
at least 34 morphologically indistinguishable species (De
Barro et al. 2011; Tay et al. 2012; Boykin and De Barro
2014). This creates daunting complexities to tailor-make
mechanisms using the most common pest control methods
such as the use of integrated pest management tools
(Kanakala and Ghanim 2019; Parry et al. 2020). The chal-
lenges and complexity of B. tabaci control are further en-
hanced by its high breeding and dispersion rate, polyphagy,
and excessive resistance to insecticide (Kumar et al. 2019;
CABI 2020). Thus, on-farm scale control technologies are
needed to constrain the spread of the pest to new areas.
However, these on-farm approaches require spatial explicit
locational information on farms experiencing B. tabaci occur-
rence and potential farms at risk for coordinated localized
intervention. This information affords precise and accurate
intervention mechanisms and allows for the prescription of
site-specific and befitting control approaches (Mudereri et al.
2020a). Unfortunately, the landscape scale requisite baseline
information of this devastating pest occurrence, spatial con-
figuration, infestation extent, and intensity remains rudimen-
tary in SSA, including Kenya (Labou et al. 2017; Macfadyen
et al. 2018; Ramos et al. 2018).

The global geographic expansion of many crop insect pests
has increased in the last decade, because of the increased ag-
riculture exports across continents and the exchange of seeds
(McCullough et al. 2006; Tay et al. 2012; Moshobane et al.
2019). Thereafter, the ability of a pest to establish and become
invasive in a new area relies on many factors that determine
the availability of the hosts and ensure the successful comple-
tion of their development cycles (Azrag et al. 2018; Tonnang
et al. 2020). Among others, precipitation and temperature
have been reported by earlier studies as key environmental
factors that affect the ability of insect pests to adapt to an area
and ultimately their distribution (Labou et al. 2017; Azrag
et al. 2018; Otieno et al. 2019b). These variables are however
highly correlated with elevation, land surface temperature
(LST), and frequently influence the land use and land cover
(LULC) regimes (Labou et al. 2017; Saghafipour et al. 2020).
Although the LULC (availability of the host plants) parameter
is highly dynamic, insects such as B. tabaci are often associ-
ated with specific LULC classes such as croplands (Gangwar
and Charu 2018). Therefore, if the conditions are suitable in
the introduced area, the pest species becomes invasive and
establishes itself, causing severe negative impacts on the local
ecosystem and economy (Ramos et al. 2018; Saghafipour
et al. 2020). Therefore, as the climate factors are the anchors
of the other variables, they stand out as the key elements
impacting the abundance and distribution of most arthropod
species including B. tabaci (Saghafipour et al. 2020). Thus,

there is a need for an immediate understanding of the potential
risks that will be brought by climate change and crop insect
pests such as B. tabaci.

It is predicted that climate change will have a great impact
on most hosts of insect pests such as maize (Midega et al.
2018), wheat and cotton (Kumar et al. 2019), rice
(Rodenburg et al. 2010), and other crops (Abd-Rabou and
Simmons 2015; Ramos et al. 2018; Sokame et al. 2020), with-
in the natural and agroecosystems (Sango and Godwell 2015;
Mudereri et al. 2019). As the atmospheric CO2 and tempera-
ture increase or decrease, they will likely result in warmer,
colder, wetter, or dryer conditions (Kriticos et al. 2020).
Thus, these conditions may become suitable for specific pests
or hosts (Macfadyen et al. 2018). For instance, Africa climate
projections indicate temperature increases of between 3 °C to
6 °C compared with those at the end of the twentieth century,
particularly in the in-land sub-tropics (Serdeczny et al. 2016).
These temperature increases are likely to cause frequent and
severe heat incidents, an upsurge in aridity, and variations in
precipitation across Africa particularly the arid and semi-arid
regions like North Africa, western South Africa, Botswana,
Namibia, and parts of Kenya (Kotir 2010; Niang et al. 2014;
Serdeczny et al. 2016). Thus, a mean temperature increase will
likely speed up the maturing period of numerous insect spe-
cies, subsequently altering their known life cycles, reproduc-
tive success, and mobility (Ramos et al. 2018). Therefore, the
distribution of many species will likely depend on the prevail-
ing climate conditions, which generally define most of the
geographical distribution observed in many species distribu-
tion modeling outputs (Otieno et al. 2019b). Despite the im-
pact of B. tabaci and the large body of research on the species,
the potential impact of climatic change on the geographical
distribution of B. tabaci at a landscape scale remains
understudied in SSA regions like Kenya.

Species distribution models (SDMs) are tools widely used in
understanding the habitat suitability of an organism (Ramos et al.
2019; Ajene et al. 2020a, b). Furthermore, SDMs are one of the
most important tools that are currently available to assess the
potential impacts of climate change on the habitat suitability
and distribution of a species. They are commonly used to project
potential future changes in the geographic ranges of species to
inform planning and developing control mechanisms especially
for pests such as B. tabaci. Although this species is already
widely distributed globally, there is a great need to access and
project its future distribution at scale mainly targeting the data
deficient areas such as in SSA countries. Earlier studies have
already demonstrated the distribution of B. tabaci globally
(Ramos et al. 2018), in Europe (Gilioli et al. 2014), in South
America (Ramos et al. 2018, 2019), the Middle East, and Asia
(Kriticos et al. 2020), but very little has been done in SSA.

Predicting the possible species distribution using SDMs
involves combining current occurrence data of a species with
appropriate environment variables (Ajene et al. 2020a;
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Mudereri et al. 2020b). SDMs have been used widely for
many purposes in conservation biology, biogeography, and
ecology (Muposhi et al. 2016; Masocha and Dube 2017;
Shekede et al. 2018). Examples of the frequently used
SDMs include the ecological niche factor analysis (ENFA),
genetic algorithm for ruleset prediction (GARP), random for-
est (RF), and maximum entropy (MaxEnt). All these models
are designed to predict species distribution using multiple en-
vironmental variables under current and potential future cli-
mate change (Biber-freudenberger et al. 2016). Nevertheless,
contrasted with other models, MaxEnt is reliably better in its
predictive performance, versatility, and usefulness, as evi-
denced by over 1000 ecological applications published since
2006 (Merow et al. 2013).

Thus, in this study, we used the MaxEnt to model the
biogeography associated with the risk of B. tabaci at a land-
scape scale using the present and future (the year 2050) cli-
mate scenarios and Kenya as a study site. Predicting geo-
graphical distributions of B. tabaci, at a localized scale pro-
vides essential local guidance and solutions to the control and
management efforts in regions with a higher risk of invasion
or establishment. Despite the global modeling of the distribu-
tion of B. tabaci, the species remains understudied within
localized contexts such as in Kenya (Ramos et al. 2018).
Moreover, predicting areas that require control and interven-
tion with high precision, is essential to safeguard the success
of producing viable and sustainable cropping systems that are
designed for the control of B tabaci. Thus, this study contrib-
utes to the understanding of the Kenyan trend in B. tabaci
occurrence and feeds into the broad body of knowledge that
aids the understanding of the connectivity of the global eco-
systems for B. tabaci establishment and control. The specific
objectives of the study were to: (1) predict and understand the
determining factors of the suitability of B. tabaci habitat at a
localized scale in Kenya and (2) estimate the suitable areas
using the future scenarios i.e. the lowest representative con-
centration pathways (RCP 2.6 and highest RCP 8.5) predicted
CO2 emissions in the year 2050.

Study area

The study was conducted in Kenya, which is subdivided into
47 very diverse counties covering a total area of 582,650 km2.
Kenya is bound by latitudes 40 45’S and 50 25` N and longi-
tudes 330 55` E and 410 55` E, bordering South Sudan to the
northwest, Uganda to the west, Somalia to the east, Tanzania
to the south, and Ethiopia to the north (Fig. 1). It has a coast-
line with the Indian Ocean on the southeast, which contains
swamps of East African mangroves. The central and western
Kenya is characterized by the Kenyan Rift Valley and home to
the highest mountain, Mount Kenya, and Mount Elgon on the
border between Kenya and Uganda.

Approximately 80% of Kenya, lies in the semi-arid to very
arid agroclimatic zones, which are predominantly inhabited
by pastoralists and agro-pastoralists with an average rainfall
of between 200 mm/yr and 600 mm/yr and mean annual tem-
perature range of 23 °C–34 °C. These regions support about
seven million people and more than 50% of the country’s
livestock population. The Central andWestern regions exhibit
cooler (14 °C–28 °C) and wetter climatic conditions (950mm/
yr–3000mm/yr) which are particularly favorable for crop pro-
duction and thus the occurrence of most crop pests. The two
regions experience a bimodal rainfall distribution with the
major crops grown in these regions being maize, tomato, veg-
etables, and beans, which are in most cases interspersed with a
variety of fruit trees, tea, and coffee. In the low-lying coastal
region with higher temperatures and higher humidity levels,
farmers cultivate a wide range of food crops as well as tree
crops like coconut palms, mango, citrus, and pawpaw. The
Eastern region is in the hot and dry semi-arid savannah biome
and has similar cropping patterns as the coastal region.

Methodology

B.tabaci occurrence data collection

The reference distribution data of B. tabaci in Kenya (n = 201)
that were used in the analysis were obtained from the Global
Biodiversity Information Facility (GBIF: (GBIF 2020). The
GBIF (https://www.gbif.org) is the largest global online
database for occurrence data of over a billion biological
records collated from field observed data contributed by
accredited institutions across the world. The data were
filtered to eliminate duplicate samples and samples without
detailed location information. Further, to reduce sampling
bias, only one sample was kept for each 1 km × 1 km grid to
match the resolution of the environmental variables as
suggested by Phillips et al. (2009). The latitude and longitude
of the retained samples (n = 83) with detailed location infor-
mation were validated using the Google Earth platform
(https://www.google.com/earth/). The retained independent
occurrence points of the B. tabaci were used as the
occurrence data in the MaxEnt modeling and for the
generation of the bias file.

Predictor variables

The predictor variables that were used in this study were de-
rived from, bioclimatic, elevation, land cover, and LST.
Variable spatial and temporal resolutions are a key notion in
determining a dataset’s fitness for a given usage as they influ-
ence the pattern that can be observed during the analysis
(Degbelo and Kuhn 2018). However, Csillag et al. (1992)
indicated that when combining environmental variables of
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varying resolutions there is no absolute best resolution since
this depends on the objective of the study. In our case, we had
variables ranging in a pixel size of 5.6 km × 5.6 km to approx-
imately 20 m × 20 m spatial resolution. This variation influ-
ences the integration of multiresolution variables within
models particularly MaxEnt. We, therefore, counteracted the
variation by resampling all the datasets to the 1 km × 1 km
pixel size to match the bioclimatic variables. All variables
used in this study were clipped to the Kenyan administrative
boundary and saved in the .asc file format for input in the
MaxEnt model. The ‘raster’ package (Hijmans 2020) in R
(R Core Team 2020) was used for all these processes.

Bioclimatic variables

We initially considered 19 bioclimatic variables that were
downloaded from the WorldClim platform (www.worldclim.
org) at approximately 1 km × 1 km spatial resolution (Fick and
Hijmans 2017; Booth 2018). These data are interpolated from
data obtained from weather stations globally using the thin-
plate smoothing spline algorithm implemented in ANUSPLIN
(Fick and Hijmans 2017). For the future climatic scenarios,
global climatic data from two of the four RCPs set by the
intergovernmental panel on climate change (IPCC) using the

total radioactive forcing of values 2.6, 4.5, 6, and 8.5 watts/m2

(IPCC 2014) were used as the future climatic scenarios.
Specifically, the current long-term bioclimatic data (1950–
2000) and a fourth version of the community climate system
model (CCSM4) derived from a one-time step i.e. 2050 (av-
erage of predictions for 2041–2060) of the future climate data
on the minimum (based on the Paris Agreement targets) and
maximum (worst case) emission i.e. RCP2.6 and RCP8.5,
respectively, were used to capture the whole range of future
climate possibilities. Bioclimatic variables encompass both
precipitation and temperature variables that have been
reported in literature to influence the occurrence and
distribution of most insects including B. tabaci (Azrag et al.
2018; Pathania et al. 2020).

Land surface temperature

The ‘daytime’ land surface temperature climate modeling grid
(LST_Day_CMG) was downloaded from https://lpdaac.usgs.
gov/products/mod11c2v006/ (Wan et al. 2015). Specifically,
we used the long-term ‘multi-day’MOD11C2 LST product of
5.6 km × 5.6 km spatial resolution available from the year
2000 to the present. We hypothesized that surface fluxes mea-
sured by the temperature at the land surface would influence

Fig. 1 Location of Kenya relative
to its neighboring countries in
Africa, the agroclimatic zones of
Kenya, and the B. tabaci
occurrence points obtained from
the Global Biodiversity
Information Facility (GBIF). The
map was developed using QGIS
software (https://www.qgis.org/
en/site/)
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the general occurrence, and reproduction of B. tabaci and thus
habitat suitability (Saghafipour et al. 2020).

Elevation

Elevation was simulated from the shuttle radar topographic
mission (SRTM) data which is available at approximately
90 m pixel size digital elevation model (DEM) with a vertical
error of less than 16 m (CGIAR-CSI 2019). The elevation was
anticipated to influence the occurrence and propagation of
B. tabaci by altering precipitation, temperature, vegetation
including crops, and the angle, direction, and intensity of the
sun on the earth’s surface (Azrag et al. 2018; Ramos et al.
2018; Bradshaw et al. 2019).

Land cover data

We used the 20 m spatial resolution European Space Agency
Sentinel-2 prototype land cover data for Africa which is freely
downloadable from http://2016africalandcover20m.esrin.esa.
int/download.php. The data are based on one year of Sentinel-
2A observations from December 2015 to December 2016
classified using the random forest algorithm (ESA 2020).
The legend includes 10 generic classes that appropriately de-
scribe the land surface at 20 m i.e. ‘trees cover areas’, ‘shrubs
cover areas’, ‘grassland’, ‘cropland’, ‘vegetation aquatic or
regularly flooded’, ‘lichen and mosses / sparse vegetation’,
‘bare areas’, ‘built-up areas’, ‘snow and/or ice’ and ‘open
water’. A total of nine classes were used in this study i.e. all
the European Space Agency Sentinel-2 prototype land cover
classes except for the ‘snow and/or ice’. Studies have shown
huge relevance and importance of land cover patterns on
modeling insect pests’ spatial distribution and association of
B. tabaci with host crops such as tomato (Ramos et al. 2019),
cassava (MacFadyen et al. 2018), cabbage (Labou et al. 2017)
among other many crops (Gilioli et al. 2014; Abd-Rabou and
Simmons 2015). This categorical data was formatted and
resampled to the same standards of the other variables for
input in the MaxEnt model.

Collinearity test of predictor variables
used in the MaxEnt model

To model the potential risk imposed by B. tabaci, there was a
need for a set of explanatory variables that were independent
of one another but of relevant ecological significance to the
occurrence of the pest species (Makori et al. 2017). Thus, it
was essential to reduce the expected collinearity among the 22
variables considered in this study i.e. the 19 bioclimatic and
the three environmental variables. This procedure was con-
ducted to avoid overfitting of the model and variable inflation
(Dormann et al. 2013). We used 2-stage variable elimination
criteria using the cluster analysis of the bioclimatic variables

and the variance inflation factor (VIF: Table 1). The biocli-
matic variables provided by WorldClim (Fick and Hijmans
2017), are all derived from the same data, hence are highly
correlated since they are mainly based on temperature and
precipitation (Gaudreau et al. 2018). In the first step, we used
the ‘virtual species’ package (Leroy et al. 2016) in R-software
(R Core Team 2020) to initially explore the clusters of the
spatial correlation of the 19 bioclimatic variables using the
Pearson’s correlation coefficient and the cluster tree
(Fig. 2a). Five bioclimatic variables; namely Bio4, Bio5,
Bio7, Bio13, and Bio19 (Table 1) were selected from this
analysis using a cutoff of |r| = 0.7. These five bioclimatic var-
iables were also chosen because of their ecological signifi-
cance in predicting most crop insect pests suitable habitats
(Azrag et al. 2018). In the second step, the bioclimatic vari-
ables that were selected from the cluster analysis were further
analyzed together with the other three environmental variables
using the VIF approach. A correlation matrix was then used to
assess the correlation among the selected bioclimatic and the
three other variables for inclusion in the final model (Fig. 2b).

VIF detects multicollinearity by taking each predictor and
regressing it against the other variables in a multiple linear
regression analysis (Plant 2012). The “usdm” package avail-
able in R and the “vifcor” function that iteratively selects pairs
of variables with high linear correlation, then eliminates the
one with the highest VIF were used for this analysis (Naimi
et al. 2014). Similarly, we set the threshold at th = 0.7, which
represents a Pearson’s correlation coefficient (r ≥ 0.7). In prin-
ciple, a VIF value greater than ten is evidence of the collin-
earity problem within a model (Dormann et al. 2013;
Mudereri et al. 2020a). Therefore, 14 of the 22 variables that
had VIFs greater than ten were eliminated leaving only eight
suitable variables for the analysis.

MaxEnt model and accuracy assessment

In our present study, we used the MaxEnt machine learning
algorithm (version 3.4.1) (Phillips et al. 2006). MaxEnt was
chosen for use in this study since it has been widely used to
predict species distribution in many studies worldwide
(Muposhi et al. 2016; Mpakairi et al. 2019). MaxEnt is statis-
tically robust, adaptable to various environments, requires a
relatively small sample size, and presence-only data
(Marchioro and Krechemer 2018). We derived the optimum
tuning and parameter settings for MaxEnt with presence-only
B. tabaci observations from the “ENMevaluate” function in
the package “ENMeval” (Muscarella et al. 2014) available in
R-software (R Core Team 2020). This approach calculates
multiple metrics to aid in selecting optimum model settings
that balance goodness-of-fit and model complexity
(Muscarella et al. 2014). Thus, the approach has been used
by many studies because it allows a comparison of several
configuration settings and to rank the resultant models
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according to different metrics (Marchioro and Krechemer
2018; Arthur et al. 2019; Mudereri et al. 2020b). We used
the following model parameters from the models with the
lowest change in the Akaike information criterion
(delta.AICc = 0) to perform the B. tabaci invasion risk assess-
ment modeling in Kenya: linear/quadratic/product: 0.233, cat-
egorical: 0.250, threshold: 1.640, hinge: 0.500, beta-multipli-
er: 5.0, multivariate environmental similarity surface (MESS)
analysis, clamping, extrapolate and fade with clamping. The
MESS analysis in MaxEnt quantifies the measure of projec-
tion uncertainty by calculating the similarity of each point in
the projected region to a set of reference points (Mesgaran
et al. 2014), in our case into the future scenarios where occur-
rence reference data are unavailable.

Furthermore, we corrected for sampling bias using the
eight variables used in this study (i.e. the five selected

bioclimatic variables, and elevation, LST as well as LULC:
n = 8) and the filtered B. tabaci points (n = 83) as inputs. The
kernel density estimator i.e. “kde2d” function of the “MASS”
package (Venables and Ripley 2002) using the “block” sam-
pling approach in R (R Core Team 2020) was used for this
experiment. The “kde2d” function affords the performance of
a two-dimensional kernel density estimate that is based on the
spatial ‘X’ and ‘Y’ coordinates of the occurrence points to
generate a raster bias file (Venables and Ripley 2002). It is
important to correct for sampling bias particularly where data
such as from GBIF is used since the collection of the data may
be biased towards settlement areas, roads, or easily accessible
areas (Phillips et al. 2009; Kramer-Schadt et al. 2013; Merow
et al. 2013; Beck et al. 2014). MaxEnt modeling approach
allows the inclusion of bias files in the model which facilitates
the choice of background data within similar bias as the

Fig. 2 a Cluster tree of the intercorrelated bioclimatic variables. The
arrows show the selected variables based on their correlation distance
from the other variables. b The correlation matrix of the eight selected

variables. Darker shades of blue and red show relatively high positive and
negative correlation values, respectively, while lighter shades of blue and
red show low positive and negative correlation values, respectively

Table 1 Environmental variables
considered in the predictive
modeling of the invasion risk by
B. tabaci in Kenya

Variable name Variable description Unit Variance inflation factor

Bioclimatic variables

Bio4 Temperature seasonality (standard deviation ×100) 3.8

Bio5 Maximum temperature of the warmest month 0C 2.1

Bio7 Temperature annual range 0C 2.0

Bio13 Precipitation of the wettest month mm 1.5

Bio19 Precipitation of the coldest quarter mm 3.2

Other variables

Elevation Ground height above sea level m 3.2

LST Land surface temperature K 1.4

Land cover Land cover Categorical 1.9
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occurrence data (Phillips et al. 2009). Our generated bias file
was used for both the current and future projection models.

Furthermore, using the above-mentioned setting parame-
ters, we replicated our model three times using the sub-
sample method and averaged the three probability outputs to
determine the optimum invasion risk and performance of the
models. We used 70% (n = 58) of the B. tabaci occurrence
points for training, while 30% (n = 25) were retained for test-
ing the model performance. The comparative relevance of
each environmental predictor for the models of B. tabaci
was evaluated using the overall percentage contribution, per-
mutation importance of each variable, the area under the curve
(AUC) of receiver operating characteristic curves, and the
Jackknife test (Phillips et al. 2006). The Jackknife test analysis
has been reported to be the best comparative index for small
sample sizes (Qin et al. 2017). Herein, we reported the AUC
of the current climate scenario, since there are no future oc-
currence points to validate our future predictions. However,
we assumed that if the model performs well with the currently
available data, it would replicate the same strength when used
to project predictions into the future.

Graphic outputs of theMaxEnt includes maps, highlighting
the probabilities of invasion risk or habitat suitability of
B. tabaci with values ranging from 0 (unsuitable) to 1 (opti-
mum). We grouped the invasion risk probabilities into five
categories as follows: very low (0–0.1), low (0.2–0.3), mod-
erate (0.4–0.5), high (0.6–0.8), and very high (0.9–1). We
used these five categories to estimate and intercompare the
percentages of the suitability area predicted within the differ-
ent climate scenarios. The summarized workflow followed in
this study is shown in Fig. 3.

Results

Maxent model evaluation

The models (both the test and training datasets) of the
B. tabaci invasion risk in Kenya using the current and future
(RCP2.6: 2050; RCP8.5: 2050) climatic variables showed a
balance between goodness-of-fit and complexity (AUC >
0.90). This demonstrates that our models showed good pre-
dictive performance (Fig. 4).

Variable importance and response

In this study, precipitation-based variables were the most rel-
evant predictors compared to temperature. Precipitation of the
wettest month (Bio13) and landcover variables contributed the
most as pointed by all the measures used in our analysis (i.e.
Jackknife AUC, overall percentage contribution, and permu-
tation importance). Based on the Jackknife results, Bio13 re-
corded the highest gain when used in isolation for the three
tested climate scenarios and therefore, appears to provide the
most useful information individually (Fig. 5).

The relative contributions of predictor variables to the
MaxEnt models showed that only four of these variables
accounted for more than 92% contribution in each model
(Table 2). The four most significant variables affecting the
distribution of B. tabaci in Kenya were land cover, precipita-
tion of the wettest month (Bio13), precipitation of the coldest
quarter (Bio19), and annual temperature range (Bio 7)
(Table 2). Additionally, the land cover had the highest per-
centage contribution and permutation importance, having

Fig. 3 Flowchart of the process
used in the predictive modeling of
the invasion risk by B. tabaci in
Kenya
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14% and 30.5%, respectively above the second-best contrib-
utor i.e. Bio13.

The curves in Fig. 6 show the marginal effect of varying
one variable and how each variable affects the MaxEnt model.

In other words, the curves show how the B. tabaci predicted
probability of presence changes as each variable is varied,
keeping all the other variables at their average sample value.
We show the response of the top five variable contributors to

Fig. 5 Relative importance of the
predictor variables for predicting
the spatial distribution of
B. tabaci based on the
Jackknife test

Fig. 4 Performance of the
replicated MaxEnt models
evaluated using the area under the
curve (AUC). The red line
presents the mean plot of the
replicated models while the blue
shade shows the standard
deviation of the replicated models
and the black line shows the
predictions performed at random
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the model i.e. Landcover, Bio13, Bio19, Bio7, and Elevation.
The response of the occurrence of the B. tabaci to the land
cover variable showed that cropland (class number 4) is the
most important class determining the potential B. tabaci oc-
currence (Fig. 6). Further, the results showed that precipitation
and temperature are critical for B. tabaci. However, the range
is very wide with species occurring within rainfall ranges as
low as 200 mm and as high as >600 mm/year. The response
obtained from Bio7 shows that B. tabaci performed better in

areas that do not possess a huge mean annual temperature
range i.e. differences between the mean temperature of the
hottest month and mean temperature of the coldest month
(±12 °C). Similarly, a wide range of altitudes was observed
to be suitable for the pest, but the probability of occurrence
generally increases with an increase in altitude. Thus, the
model indicates that wide ranges of temperature, rainfall,
and elevation are suitable for the B. tabaci pest.

B. tabaci potential invasion risk areas under current
and future climate conditions

Approximately 40 of the 47 counties in Kenya were predicted
to be at the risk of invasion by B.tabaci. Western counties
showed the highest invasion risk potential compared to all
the other counties with ~100% of the area being suitable for
B. tabaci invasion. Also, the coastal counties i.e. Lamu, Kilifi,
Kwale, and Mombasa showed high potential for B. tabaci
invasion, particularly towards the coastline (Fig. 7). Notably,
most of the sites and suitable habitat were in the humid to
semi-humid agroclimatic zones, where most of the crop agri-
culture is conducted. Again, the northern and northeastern
regions, where the climate is arid to very arid, exhibited the
lowest potential of invasion by B. tabaci. Although the loca-
tions and patterns of the future potential risk areas are like the

Fig. 6 Response curves derived from the MaxEnt model showing the
influence of the predictor variables: a land cover b Bio13; c Bio19; d
Bio7; and e elevation on the probability of occurrence of the B. tabaci in

Kenya. The red color (curves and bars) in all graphs (a–e) show themean of
the replicates while the blue color shows the variance in the replication

Table 2 The average percentage contribution and permutation
importance of the predictor variables used for predicting B. tabaci
invasion risk areas in Kenya

Variable Percentage
contribution

Permutation
importance

Land cover 35.9 50.9

Bio13 21.6 20.4

Bio19 18.7 14.5

Bio7 18.6 5

Elevation 5.1 8.8

Land surface
temperature

0 0.2

Bio5 0 0.2

Bio4 0 0
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current potential distribution, our models’ results suggest that
the geographic extent and risk magnitude would generally
increase under the tested scenarios of climate change. This
holds, particularly for the central region counties such as
Kitui, Makueni, and Machakos and the southeastern counties
i.e. Garissa, Taita Taveta, and Turkana county in the north of
Kenya (Fig. 7).

Table 3 shows the relative changes in area and area per-
centage in suitability for B. tabaci invasion in comparison to
the total area of Kenya. Results show that there will be an
increase in the total area, that is likely to be invaded by the
pest, with the highest area predicted under the worst-case sce-
nario (RCP8.5). Although there is a slight decrease in the area
under ‘very high’ risk from the current (17,963 km2) to RCP
8.5 (16,842 km2) their respective percentages did not change
(3%). Further, we observed that a large area that has a very
low probability under the current scenario would become
more susceptible to invasion under climate change. An area
of approximately 41,170 km2 will increase in invasion risk
from very low suitability or become of moderate suitability.

Discussion

The models produced in this study demonstrated a high level
of reliability with AUC > 90%. Results suggested that all
models performed better than at random with a high agree-
ment statistic with the data. The high proportion of agreement
with the potential invasion risk underscores the dependability
of these models. Thus, the model outputs obtained from this
study may be considered reliable as a foundation for research
on B. tabaci occurrence and risk in Kenya. In this study,
MaxEnt provided compelling results despite the integral un-
certainty provided by niche modeling caused by the quality of
occurrence data and sampling bias, selection of spatial data

layers and their resolution, species ecological characteristics
(including environmental adaptation), and spatial autocorrela-
tion (Phillips et al. 2006; Merow et al. 2013; Støa et al. 2018).
Also, the results obtained from this study were robust since
MaxEnt software has a user interface that can facilitate for
correction of sampling bias and offers parameter adjustments
which can enhance the quality of specific models (Kramer-
Schadt et al. 2013). In this study, we adjusted the selection of
feature types, the value of regularization multipliers, the selec-
tion of background points, and the extent to obtain model
results adhering to the current occurrence of the species. The
success of our models is supported by the biological validity
of the attained response curves and robust validation
results. Thus, our study provides critical information
on the risk of B. tabaci for open-field agriculture in
Kenya.

B. tabaci has been reported by many studies to occur in
wide-ranging climatic envelopes and environments across all
continents (Labou et al. 2017; Ramos et al. 2018; Bradshaw
et al. 2019). However, our results suggest that in Kenya, it
occurs in tropical to subtropical climatic zones that have high
mean annual temperatures and possess broad differences in dai-
ly temperatures and a wider range in precipitation (Ramos et al.
2018). These generic characteristics substantiate the great po-
tential for the B. tabaci invasion in several areas in other African
countries (Labou et al. 2017; Kriticos et al. 2020). Although
B. tabaci can occur across a wide elevation, land cover, precip-
itation, and temperature range as established by our study, the
species can be affected by extreme weather conditions. Like
other insect species, extreme temperatures or precipitation (ei-
ther high or low) can change the development of the species
(Janzen and Hallwachs 2019). Also, most vegetables that are
typically the hosts of B. tabaci exhibit great sensitivity to ex-
treme climatic conditions thereby reducing the conducive envi-
ronment for the pest to proliferate (Ramos et al. 2018).

Fig. 7 Potential invasion risk of B. tabaci in the 47 counties of Kenya using the (a) current, b RCP2.5 of 2050, and c RCP 8.5 of 2050 climate scenarios
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High precipitation levels generally promote vegetative
growth and the establishment of diverse plant communities
(Landmann et al. 2020). It is the availability of abundant host
plants in areas of high precipitation that indirectly result in
B. tabaci population build-up. If there are abundant host
plants, B. tabaci remain active throughout the season.
Furthermore, the polyphagous behavior of this pest means that
the insect can utilize different types of plants, including wild
host plants that are available within a production landscape to
support population growth (Azrag et al. 2018). Earlier studies
have forecasted a greater probability of the presence of
B. tabaci in temperatures around 23 °C–24 °C (Labou et al.
2017; Macfadyen et al. 2018; Kumar et al. 2019). This could
be the main explanation as to why B. tabaci occurrence was
high in areas with a mean temperature close to the prime
requirement for its growth in most areas in Kenya.
However, a mixture of climate factors with other vari-
ables, such as a higher number of hosts, might be re-
lated to the success of the B. tabaci distributions in the
western counties and most of the central counties that
perform horticultural activities such as cassava and to-
mato production (Kyalo et al. 2017; Jozani et al. 2020).
As established in this study, the cropland was the most
relevant land cover class that defines the potential risk
of B. tabaci invasion by providing the relevant host
crops for the pest. This directly determines B. tabaci
carry-over sequence from crop to crop with different
biotypes preferring plants belonging to contrasting plant
families, further enhancing the success and propagation
of the B. tabaci species. Contrastingly, the decreased B. tabaci
risk levels in the few areas observed in our study may be due
to a decline in optimum climatic conditions and other suitabil-
ity factors for the species or the unavailability of hosts.

Climate change has been predicted by many studies to
increase the occurrence and spread of invasive insect species
(Lebouvier et al. 2011; Otieno et al. 2019a; Ajene et al. 2020b;
Mtengwana et al. 2020). Our current study established a sim-
ilar pattern of the relative increase in the potential invasion
area by B. tabaci, more so in open-field agriculture in the
coastal and northern counties in Kenya. The main reason is
related to the predicted increase in atmospheric CO2 and

temperature coupled with erratic rainfall which will mainly
affect both the pest and the host (Kinzner et al. 2019). Thus,
our study employed a country level landscape approach,
which provided a more robust result for Kenya or any other
country with similar suitable conditions.

Our study focused on the holistic prediction of all potential
B. tabaci biotypes in Kenya, which provides an overview of
its occurrence in the country. However, the extensive biotypic
variations described within whitefly species also account for
their differential fitness within the environment. Therefore,
their biological parameters are best explained by parameters
such as host plants, temperature, and biotypes (Delatte et al.
2009). Biotype Q, for instance, can adapt to new environ-
ments in comparison to biotype B (Mahadav et al. 2009),
hence has a greater survival chance under both low and high
temperatures as evidenced by its presence in both tropical and
temperate climates (Yu et al. 2012). While other studies have
also shown that temperatures ranging from 17 °C to 35 °C
allow for a linear relationship between development time and
temperature (Bonato et al. 2007; Delatte et al. 2009), similar
work using some temperature-dependent models have also
established 10.2 °C (Bonato et al. 2007), 10.3 °C (Delatte
et al. 2009) and 12.5 °C (Teng et al. 2010) as the lower tem-
perature threshold for B. tabaci nymph development. This
makes the understanding of the relevant climate envelope nec-
essary for the pest to establish more complex particularly in
the face of climate change.

Efforts to improve and develop new crop cultivars that
adapt to the impending climatic conditions offer a new lifeline
to most farmers and provides an opportunity to grow many
crops in areas where temperatures are quite high or dry
(Tonnang et al. 2020). However, there will always be the
drawback of providing and allowing adaptation of insect pests
such as B. tabaci. Hence, it is also prudent to develop and
improve cultivars that are more resistant to pest invasion.
Furthermore, integrated pest management controls can be
used to enhance the control of these pests such as B. tabaci.

Currently, it is most preferred to conduct intensive horti-
culture cropping in greenhouses, net houses, or closed glass-
houses, although these constitute negligible acreage based on
the study’s scale. In all these cases, appropriate aeration can

Table 3 The relative predicted
area (km2) and percentage of the
potential invasion risk (%) of the
B. tabaci in Kenya, using the
current and future i.e. RCP2.6 and
RCP8.5 for the year 2050 climate
scenarios

Invasion
risk

Current
(km2)

RCP2.6
(km2)

RCP8.5
(km2)

Current
(%)

RCP2.6
(%)

RCP8.5
(%)

Very low 398,264 388,450 357,088 69 67 61

Low 100,678 102,939 133,325 17 18 23

Moderate 36,435 38,774 45,172 6 7 8

High 29,310 36,168 30,224 5 5 5

Very high 17,963 16,319 16,842 3 3 3

Total 582,650 582,650 582,650 100 100 100
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control the interior temperatures providing conducive envi-
ronments for the propagation of B. tabaci (Bradshaw et al.
2019). Consequently, modeling studies such as presented in
this current study cannot consider this phenomenon into ac-
count. For this reason, B. tabaci in sheltered environments
may have been present in some other locations in Kenya but
were not highlighted by our model.

Conclusions

The generic characteristics required by B. tabaci to propagate,
show the great potential for the pest to invade several other
areas in other African countries with similar environmental
conditions. Our study indicates that climate change will likely
increase the geographical distribution range currently occu-
pied by B. tabaci in Kenya particularly in response to the
increase in temperature. Our results contribute as an empirical
warning to agricultural authorities in the respective counties of
Kenya to employ adaptive strategies to avoid a reduction in
viability for open-field agriculture due to the invasion by this
pest. Thus, preventive measures must be taken to combat the
spread of viruses associated with B. tabaci into areas where
they have not yet been reported. Phytosanitary strategies, cul-
tural and biological control measures are necessary for loca-
tions that are at very high, high, and moderate risk of
B. tabaci, to reduce the risk and economic losses to small-
holder farmers in Kenya. The results of our study can also
be used in future studies and other modeling approaches
to establish the influence of differences of the existing
and new biotypes, other pest-plant interactions, natural ene-
mies, pest resistance, dispersal, and adaptations within the
already identified and potentially susceptible areas to
B. tabaci invasion.
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