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A B S T R A C T

Population growth and economic development have resulted in increased water demands, threatening fresh-
water resources. In riverine ecosystems, continuous monitoring of the river quality is needed to follow up on
their ecological condition in the light of water pollution and habitat degradation. However, in many parts of the
world, such monitoring is lacking, and ecological indicators have not been defined. In this study, we assessed
seasonal variation in benthic macroinvertebrate assemblages in a tropical river catchment in northeastern
Tanzania, which currently experiencing an increase in agricultural activities. We examined the potential of in-
stream environmental variables and land-use patterns to predict the river macroinvertebrate assemblages, and
also identified indicator taxa linked to specific water quality conditions. Macroinvertebrate abundance, taxon
richness and TARISS (Tanzania River Scoring System) score were higher in the dry season most likely due to
higher surface runoff from agricultural land and poorer water quality in the wet season. In the wet season macro
invertebrates seem to be limited by chlorophyll-a, oxygen and phosphorous while in the dry season, when water
flow is lower, nitrogen and turbidity become important. Substrate composition was important in both seasons.
Given the fact that different selective filters limit macroinvertebrate assemblages in both seasons, a complete
picture of water quality can only be established by monitoring in both seasons. Riparian buffer zones may help to
alleviate some of the observed negative effects of agricultural activities on the river system in the wet season
while limiting irrigation return flows may increase water quality in the dry season.

1. Introduction

Human activities negatively affect the functioning of freshwater
ecosystems globally, resulting in the deterioration of water quality, loss
of biodiversity and loss of ecosystem services (Malmqvist and Rundle,
2002; Søndergaard and Jeppesen, 2007; Chakona et al., 2008;
Dudgeon, 2010; Vorosmarty et al., 2010). Excessive nutrient inputs,
flow alteration, loss of riparian buffer zone and sedimentation are
among the major anthropogenic impacts on freshwater ecosystems
(Hrodey et al., 2009; Nyenje et al., 2010; Dodds et al., 2013). Globally,
it is estimated that about 65% of freshwater habitats are considered
moderately to severely threatened (Dudgeon et al., 2005; Schowe and
Harding, 2014). This is especially true for (sub) tropical developing

countries where intensification of land use for agriculture and poor
disposal of untreated waste have markedly degraded rivers and streams
(Dudgeon, 1992; Beyene et al., 2009; Dlamini et al., 2010; Nyenje et al.,
2010; Paisley et al., 2011; Bere and Nyamupingidza, 2014)

The quality of aquatic resources is usually assessed using physical,
chemical and biological characteristics. However, impact assessment
based on water chemistry alone is insufficient (Dalu et al., 2017a), since
it does not integrate water quality temporally (Bellinger et al., 2006;
Dalu and Froneman, 2016). Biological monitoring of freshwater eco-
systems is acclaimed to be a quick and cost-effective method for as-
sessing ecosystem conditions (Ollis et al., 2006; Dallas et al., 2010; Li
et al., 2010). It allows long-term environmental effects to be detected,
providing a broad measure of their synergistic impacts (Dalu and
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Froneman, 2016). Among the potential biotic component available for
biomonitoring, benthic macroinvertebrates are the most commonly
used in many regions (Dallas, 1995; Li et al., 2010; Aschalew and Moog,
2015; Siddig et al., 2016; Nhiwatiwa et al., 2017b). This is because they
are ubiquitous and abundant even in small streams and form a domi-
nant component of stream food webs (Rosenberg and Resh, 1993; Resh
et al., 1995; Barbour et al., 1999; Hering et al., 2006). Benthic mac-
roinvertebrates are regarded as good indicator organisms because they
show taxon-specific differences in sensitivity to pollution, are tax-
onomically diverse, and have an aquatic life span long enough to pro-
vide a record of environmental quality (Metcalfe, 1989; Barbour et al.,
1999; Nhiwatiwa et al., 2017a).

Rivers and streams often vary over time and exhibit seasonal
variability in factors such as hydrology, water chemistry and habitat
availability (Allan and Castillo, 2007; Dallas, 2004). Riverine organisms
have specific habitat requirements and seasonal variation in these
conditions will therefore affect the structure of benthic macro-
invertebrate assemblage (Dallas, 2004; Zhang et al., 2012). As a result,
to use macroinvertebrates as indicators and interpret the functionality
of these communities in the light of ongoing environmental change, it is
necessary to take this seasonal variation into account. (Dallas, 2004;
Kilonzo et al., 2014). A major challenge is to separate potential effects
of natural in-stream factors (e.g., flow rate, substrate) on biota and
water quality from those linked to pollution and anthropogenic dis-
turbance (e.g., agricultural activities) (Kilonzo et al., 2014; Jun et al.,
2016).

Local in-stream factors such as water velocity, substrate type and
water chemistry have been shown to primarily structure the assemblage
of benthic macroinvertebrates by shaping local habitat characteristics
(Richards et al., 1997; Statzner et al., 1988; Sandin and Johnson, 2004;
Brooks et al., 2005; Allan and Castillo, 2007). Water velocity, for ex-
ample, presents a direct physical force to the organisms and affects
other in-stream factors such as food and sediment delivery, and oxygen
content (Poff et al., 1997; Sandin and Johnson, 2004; Belmar et al.,
2013; Pan et al., 2013). In addition, variation in substrate composition,
in particular, is essential for the existence of many macroinvertebrate
species because substrata provide shelter, food sources, and protection
from predators (Ciutti et al., 2004; Li et al., 2012; Jun et al., 2016).

Moreover, landscape factors such as land-use patterns have a strong
influence on river water and habitat quality, and subsequently on its
biotic components. Agricultural activities, for example, can incite ero-
sion and runoff of sediments, nutrients, and pesticides in river systems,
consequently affecting macroinvertebrate assemblages (Kilonzo et al.,
2014; Kalkhoff et al., 2016; Nhiwatiwa et al., 2017a). Riparian clear-
ance and subsequent increased solar radiation can lead to higher water
temperature and alter fundamental biogeochemical processes such as
respiration and inputs of dissolved organic carbon (Paulo et al., 2019).
Several studies have linked land use patterns to responses of benthic
macroinvertebrate communities (Karaouzas et al., 2007; Zhang et al.,
2012; Theodoropoulos et al., 2015; Bere et al., 2016). However, in-
formation from tropical regions and Africa in particular are still scarce
(Masikini et al., 2018).

Although numerous studies on seasonal variations in benthic mac-
roinvertebrate assemblages in river systems have been conducted in
temperate region (e.g., Perona et al., 1999; Sporka et al., 2006; McCord
and Kuhl, 2013), there is an increasing interest in tropical systems
across the globe (Dudgeon, 2008; Qadir et al., 2008; Kilonzo et al.,
2014; Jun et al., 2016). There is important variation in flow predict-
ability in tropical rivers (Pearson, 2014) and stream macroinvertebrate
assemblages can vary strongly both within and among catchments
(Boulton et al., 2008; Pearson et al., 2017). As a result, it is difficult to
generalize the relative importance of landscape and local factors af-
fecting river ecosystems (Sandin and Johnson, 2004) and there is a need
for more studies from different areas of the world, particularly from the
tropics.

In Tanzania like many (sub) tropical African countries, assessment

of river quality is mainly based on the analysis of physico-chemical
water quality parameters (e.g., Kihampa et al., 2013; Selemani et al.,
2017). Biological assessment of river quality conditions using benthic
macroinvertebrates has become established albeit relatively recently
(Elias et al., 2014; Kaaya et al., 2015). Thus far, only a few studies on
benthic macroinvertebrates have been published (Elias et al., 2014;
Kaaya et al., 2015; Shimba and Jonah, 2016; Masikini et al., 2018). But
these are limited in resolution and most river systems have not been
investigated. As a result, the association between macroinvertebrate
assemblages and environmental conditions in river systems in Tanzania
is still not fully understood and we are currently not able to assess
potential anthropogenic impacts on river quality. Consequently, there is
a need for integrated high-resolution studies supported by appropriate
statistical models that try to achieve this goal.

The Ruvu River catchment (RRC) is a socio-economically important
catchment in the upper Pangani River basin: a biodiversity hotspot area
in northeastern Tanzania (IUCN Eastern Africa Programme, 2003). The
catchment is experiencing increases in agricultural activities accom-
panied by overexploitation of water for irrigation (Shaghude, 2006;
PBWO/IUCN, 2007). Despite the increasing anthropogenic pressure,
thus far no study has addressed how land use could affect seasonal
variation in the river quality (i.e., the physico-chemical and biological
condition of the river system) in the catchment. At the moment, it is
also not known which macroinvertebrate indicator taxa may be linked
with specific water quality conditions.

In this study, we reconstruct seasonal variation in physico-chemical
water quality and benthic macroinvertebrate assemblages in a tropical
river catchment in Tanzania and build models to explain this variation.
We used a combination of more quantitative indicator species analysis
(IndVal) and multivariate analyses (variation partitioning of re-
dundancy models) to study links between benthic macroinvertebrate
assemblages and environmental factors over an entire catchment during
two different seasons. We specifically aimed to (i) assess seasonal trends
in physico-chemical water quality and macroinvertebrate assemblages
and distributions, and (ii) identify key environmental factors (i.e., in-
stream environmental variables and land-use factors) that can explain
variation in macroinvertebrate community composition in the RRC. We
also aimed (iii) to identify macroinvertebrate indicator taxa for the
different water quality conditions in the RRC. We hypothesized that
macroinvertebrate assemblages would vary seasonally due to differ-
ences in environmental conditions and rainfall surface run off patterns.
We initially hypothesized that land use effects on river quality may be
more pronounced in the rainy season due to higher surface runoff. On
the other hand, lower flow rates might result in higher impacts in the
dry season when pollutants could be present at higher concentrations.
Given these contrasting conditions we expected that different taxa
might be useful as indicator species in the dry season compared to the
wet season.

2. Materials and Methods

2.1. Study area

The Ruvu River catchment (not to be confused with Ruvu River in
the Wami basin in the Morogoro region, Tanzania) is located in the
upper Pangani River basin in the Kilimanjaro region, Tanzania, and is
one of the permanent rivers recharging the Nyumba ya Mungu dam
(Fig. 1). The catchment lies between 3.0° and 4.2 °S and 36.3° and
38.1 °E in the northeastern part of Tanzania and covers approximately
25% of the total basin area. The area is drained by four main rivers and
their tributaries: Ghona River (RH), Dehu River (RD), Soko River (RS),
and Ruvu River (RV). The water in the catchment originates from
natural springs (along the eastern slopes of Mt. Kilimanjaro) and Lake
Jipe (recharges the Ruvu River). The altitude of the Ruvu River
catchment ranges from 4000 meters to 650meters a.s.l. Mean annual
rainfall ranges from 2000mm along the slopes of Mt. Kilimanjaro to
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500mm in the low lands (PBWO/IUCN, 2007). The rainfall has a bi-
modal pattern where long rains (Masika) are experienced in the months
of March to May and the short rains (Vuli) which are less reliable
normally coming in November and December (Kiptala et al., 2013). The
river system is subjected to various sources of pollution including dif-
fuse pollution from agricultural activities (e.g., soil erosion, fertilizer

run-off), sewage and domestic waste (personal observations).
Economic activities follow the escarpment with Afrotropical mon-

tane rain forest (along the Mt. Kilimanjaro forest reserve) and multi-
strata agroforestry (with intercropped coffee and banana plantations as
main crops, and livestock keeping including dairy cattle, goats and
pigs) in the upper reaches (Mathew et al., 2016). The middle and lower

Fig. 1. Map of the Ruvu River catchment showing (a) the location of Ruvu River catchment in Tanzania and the location of the twenty-nine monitoring sites, and (b)
the spatial distribution of seven land-use classes in the Ruvu River catchment in relation to the river monitoring sites. (Source: Kiptala et al., 2013). Abbreviations:
RV=Ruvu River, RD=Dehu River, RH=Ghona River, RS= Soko River.
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reaches consist of savanna bushland, small and large scale irrigated
agriculture (common grown crops are rice, maize, beans, sisal, su-
garcane, vegetables and fruits), herding, fishing and small industries
(UNDP, 2014; Mathew et al., 2016). Mbonile (2005) and PBWO/IUCN
(2007) reported higher population density in the upper Pangani River
Basin because of more favorable living conditions and the availability
of fertile soils for agriculture, in particular. Approximately 80% of the
population is engaged in agriculture and irrigation consumes most (up
to 64%) of the available freshwater resources (Kiptala et al., 2013).

2.2. Study design

A total of 29 monitoring sites in the Ruvu River catchment (Fig. 1
and Table S1 (Supplementary Information) were sampled both in the
dry (August–September 2015) and in the wet season (April–May 2016)
to capture seasonal patterns in environmental variables and benthic
macroinvertebrate assemblages. The sampled sites included four main
rivers, namely Ghona River (RH), Dehu River (RD), Soko River (RS),
and Ruvu River (RV) which drain to form the Ruvu River catchment
(stream orders 1–3). The spatial gradient consisted of a ∼ 51 km
longitudinal distribution of monitoring sites from upstream to down-
stream. Along this gradient, there was variation in land-use activities
(Table S1).

2.3. Environmental variables sampling and analysis

Water samples were collected once in each season. At each sampling
time, two water samples (n= 2) were taken across the river section at
each monitoring site. Water samples were collected using high density
polyethylene (HDPE) 1-litre bottles. The bottles were washed and
rinsed with distilled water and left overnight with 5 % hydrochloric
acid solution (HCL). Prior to sampling, the bottles were rinsed again
three times with sample water on site. Samples were collected by in-
serting the bottles at mid-depth in the river in the opposite direction of
the river current (APHA, 2012). The samples were transported in an ice
cooler box to the laboratory of the Department of Water Environmental
Science and Engineering (WESE), at the Nelson Mandela African In-
stitution of Science and Technology (NM-AIST) Arusha, Tanzania for
analysis. In the laboratory, samples were preserved at 4 °C to stop the
metabolism and all activities of the organisms in the water prior the
analysis (APHA, 2012).

On each sampling occasion, electric conductivity (EC), temperature,
pH, chlorophyll-a (Chl-a), turbidity (Turb), and dissolved oxygen (DO)
were measured in situ at each monitoring site. Turbidity was de-
termined using a HANNA-portable turbidity meter (Model-HI93703).
Chlorophyll-a was measured using an AquaFluor Handheld Fluorometer
(Model-8000-010). Fluoride (F-) was determined using an ion selective
electrode (Mettler Toledo SevenCompact™ pH/Ion S220). DO, pH, and
EC, were measured using a HANNA multi-parameter instrument
(Model-HI 9829). Chemical measurements of orthophosphate (PO43−),
nitrate (NO3–N), ammonia (NH3-N), total phosphorus (TP), total ni-
trogen (TN), and chemical oxygen demand (COD) were carried out in
the laboratory using a portable spectrophotometer (Model HACH-DR
2800). Orthophosphate concentration was measured using an ascorbic
acid (PhosVer 3) method (range: 0.02 to 2.50mg/L PO43−), nitrate
concentration was measured using a cadmium reduction method
(range: 0.01 to 30.0mg/L NO3–N), ammonia was measured using the
Nessler method (range: 0.02 to 2.50mg/L NH3-N), total phosphorus
was measured using PhosVer3 with acid persulfate digestion method
(range: 0.06 to 3.50mg/L PO43–), total nitrogen was measured using a
persulfate digestion method (range: 0.1 to 25.0mg/L N), and chemical
oxygen demand was measured using a reactor digestion method (range:
0.7 to 150.0mg/L COD). All chemical analyses followed the standard
methods for the examination of water and wastewater by APHA (2012).

Depth, flow velocity and substrate composition were measured at
each monitoring site. Flow velocity was measured using a Seba

Universal Current Flow Meter F1 positioned at a height of 0.60 (water
depth) above the stream. Water depth was determined using graduated
measuring rod. Substrate composition was visually assessed following
Minshall (1984), based on the following size class categories: (silt/
mud<0.06mm), sand (0.06–2mm), gravel (2–64mm), cobbles
(64–256mm) and boulders (> 256mm). The dominant substrate type
at each monitoring site was noted. A digital Elevation Model (DEM)
(30m resolution) was used to delineate the catchment boundaries using
the hydrology tools using ArcGIS 10.2 desktop GIS software (ESRI
Company, Redlands, California, USA). Data on land-use categories in
the catchment were obtained from Kiptala et al. (2013). In this study,
land-use types were reclassified into seven major classes: (1) Water
bodies; (2) Bare land; (3) Shrub land; (4) Agricultural land; (5) Afro-
montane forest; (6) Forest and cropland; and (7) Wetland and swamps
(Fig. 1, Table S2; Supplementary information). Land-use information
was derived as percentage (%) composition of each land-use type of a
catchment area upstream of each monitoring site using ArcMap 10.2.

2.4. Macroinvertebrate sampling, identification and counting

Macroinvertebrates were collected in a semi-quantitative way using
a kick net of 1mm mesh size on a 30-cm square frame following the
TARISS sampling protocol (Kaaya et al., 2015). Samples were collected
from the dominant habitat type present at each site (i.e., the habitat
that covers about 70% of the 50m stretch making up the river section at
the site). Sampled habitat types included (i) stones in-current (cobbles,
boulders and bedrock), (ii) vegetation/macrophyte, and (iii) gravel/
sand/mud (GSM). Stones and GSM habitats were sampled for one
minute by kicking, turning or scraping them with the feet, whilst con-
tinuously sweeping the net through the disturbed area. The vegetation/
macrophyte habitat was sampled by pushing the net vigorously and
repeatedly against and through the vegetation over an area of ap-
proximately two meters. All drifting material collected in the kick net
was stored in a labeled plastic container with 70% ethanol and trans-
ported to the laboratory for sorting and identification. In the laboratory,
samples were washed with tap water using a 0.5 mm mesh sieve then
transferred into a white tray to sort out all macroinvertebrate speci-
mens before preservation in 70% ethanol. The macroinvertebrates were
identified with a dissecting microscope (10X magnification) to family
level using different identification keys (Croft, 1986; Davies and Day,
1998; Gerber and Gabriel, 2002). It is well recognized that the re-
lationship between macroinvertebrate assemblages and the environ-
ment is best performed using species-level identification (Fugère et al.,
2016; Dalu et al., 2017b), however, family richness and species richness
often correlate strongly in stream invertebrate communities, and the
same key environmental factors seem to drive assemblage composition
at the family species level (Fugère et al., 2016). Thus, family level
identification has shown to be sufficient to detect effects of environ-
mental disturbances such as pollution (Kaaya et al., 2015; Dalu et al.,
2017b).

2.5. Data Analysis

As macroinvertebrate biotic indices, we used taxon richness
(number of Taxa (Taxa_S)) and the TARISS score. The latter index was
developed specifically for river macroinvertebrates in Tanzania: de-
signed for assessing ecological condition of river systems in the country.
It takes high values when a site contains many sensitive taxa. The index
was calculated following Kaaya (2014) by summing up taxon specific
sensitivity weighting scores for each site. This index therefore does not
consider the abundance. The sensitivity weighting ranges from 1 to 15,
with values> 10 indicating taxa less tolerant to pollution.

Given that several variables could not generate acceptable normal
distributions of residuals necessary for parametric tests (Shapiro Wilk
test, p≥ 0.05), therefore, we opted for the non-parametric Wilcoxon
signed rank test (Wilcoxon, 1945) at 95% confidence level to test for
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significant differences in macroinvertebrate biotic indices and en-
vironmental variables between seasons.

Generalized linear models with a Poisson error distribution were
used to study the relationship between environmental variables (i.e.,
land-use and in-stream environmental variables) and macro-
invertebrate biotic indices (i.e., taxon richness and TARISS score). The
Poisson error distribution is appropriate for modelling community
count data with many zeros (O’Hara and Kotze, 2010). A backward
selection followed by a forward selection was computed to eliminate
non-significant environmental variables from the models using the
function step in the vegan package (Oksanen et al., 2016) in R (version
3.1.2, R Core Team, 2014). The procedure aimed to maximize the po-
tential variation in macroinvertebrate biotic indices that can be ex-
plained by environmental variables. The Akaike information criterion
(AIC) and Mc Fadden’s pseudo R2 coefficient (R²pseudo) were used to
determine the model with the best subset of environmental predictor
variables. The AIC is an estimator of the relative quality of statistical
models for a given set of data; it estimates the quality of each model
relative to each of the other models (Akaike, 1974). The chosen ‘best’
model is the one that minimizes the Kullback-Leibler distance between
the model and the data, and has a minimum AIC (most parsimonious
model) compared to all the other models (Burnham and Anderson,
2002). The latter (i.e. R² pseudo) is a simple measure for model fit for
generalized linear models. R2pseudo coefficients are typically much
smaller than conventional R2 coefficients, values between 0.2 and 0.4
already indicate excellent model fit. Prior to this analysis, the ex-
planatory variables were tested for correlation using Spearman rank
correlations to prevent multicollinearity in the models. For example,
total-P and orthophosphate were strongly correlated so we only in-
cluded total-P in the model, while acknowledging in our interpretation
that this gradient also reflects orthophosphate.

We tested for the effect of environmental variables (i.e., land-use
and in-stream environmental variables) on macroinvertebrate commu-
nity composition using separate redundancy analyses (RDA), a multi-
variate extension of multiple regression. Prior to analysis, macro-
invertebrate count data were Hellinger transformed to improve the
performance of ordination with community composition data con-
taining many zeros (Legendre and Gallagher, 2001; Zuur et al., 2007).
Rare taxa that occurred in less than three sites were not included in the
analysis as this is insufficient to model their distributions. The sig-
nificance of the RDA models was assessed with Monte-Carlo permuta-
tions (nperm=999). A forward selection procedure was performed to
retain only significant variables in the models. The relationships be-
tween the most important explanatory variables (retained in the model
by forward selection) and macroinvertebrate community composition
(Hellinger transformed taxon abundance data) were visualized using a
Principal Component Analyses (PCA) ordination plot. The environ-
mental variables were added in the plot as supplementary variables that
do not affect the ordination. Taxa for which less than 30 percentage of
variation was captured by the plot were not shown.

In addition, the relative importance of local in-stream environ-
mental variables and land-use variables in terms of explaining macro-
invertebrate assemblages was quantified using a variation partitioning
procedure. This procedure based on partial redundancy analyses
(pRDA) (Legendre and Lengendre, 2012) allows to partition the total
amount of variation in macroinvertebrate assemblages, and to be de-
composed into fractions explained by different sets of explanatory
variables (Legendre and Lengendre, 2012). It defines a fraction of un-
explained variation, fractions that are uniquely explained by land use or
in-stream environmental variables, respectively, and a third fraction
that captures the variation explained by the covariation between land
use and local in-stream environmental conditions.

Finally, the IndVal i.e., indicator species method was used to detect
indicator taxa linked to different water quality classes (Dufrêne and
Legendre, 1997; De Cáceres et al., 2010). The studied sites were cate-
gorized a priori in good, intermediate/fair and poor water quality

categories using the TARISS score (Kaaya et al., 2015); good:
TARISS > 80, intermediate/fair: TARISS 50–80; poor: TARISS < 50.
The classification was based on the Gower distance matrix and a hier-
archical clustering analysis (Ward method) (Dufrêne and Legendre,
1997; Borcard et al., 2011). A good indicator taxon is mostly found in
one site class and is present in most sites belonging to that class. The
indicator value of a taxon varies between 0 and 1, attaining its max-
imum value when all individuals of one taxon occur in all sites of a
single site class (Dufrêne and Legendre, 1997; Heino et al., 2005;
Lumbreras et al., 2016). The significance of the indicator values for
each taxon were tested via Monte-Carlo permutations (nperm=999).
The indicator value has two components; (i) a specificity/predictive
value (component A) and (ii) a sensitivity/fidelity (component B).
Specificity (A) is the probability that the surveyed site belongs to the
target site class given the fact that the taxon has been found, while
sensitivity (B) is the probability of finding the taxon in sites belonging
to the site class.

All analyses of macro invertebrate assemblages were performed
separately for the dry and the wet seasons to be able to contrast dif-
ferent drivers of diversity and assemblage structure. All statistical tests
were performed in R version 3.1.2 (R Core Team, 2014) using the
packages vegan, permute, packfor and indicspecies.

3. Results

3.1. Environmental variables

The summary statistics of the measured water quality variables are
presented in Table S3 (Supplementary Information) as mean ±
standard deviation (SD). Significant differences between dry and wet
seasons (Wilcoxon signed rank test, p < 0.05) were observed for che-
mical oxygen demand, total nitrogen, chlorophyll-a, turbidity and
fluoride, Table 1 and Fig.S1 (Supplementary Information). Concentra-
tions of phosphate, ammonia and nitrate showed no significant seasonal
variation (Wilcoxon signed rank test, p > 0.05), however, the con-
centrations were higher in the wet than in the dry season, Table 1.
Wilcoxon signed rank tests also showed significant differences in
average velocity and average water depth (Wilcoxon signed rank test,
p < 0.05) between wet and dry seasons (Table 1).

3.2. General patterns of macroinvertebrate community structure

A total of 7530macroinvertebrates corresponding to 54 families
were collected in both the dry and the wet seasons (Table S4;
Supplementary Information). The main taxonomic groups were
Trichoptera, Ephemoroptera, Coleoptera, Hemiptera, Plecoptera
Odonata, Decapoda, and Gastropoda. Diptera was the most diverse
taxon with nine families, followed by Hemiptera with eight families,
Coleoptera with seven families, and Ephemeroptera, Trichoptera and
Odonata with five families each. Macroinvertebrate abundances, taxon
richness and TARISS score were all higher in the dry season than in the
wet season (Wilcoxon signed rank test, p < 0.05 (Table 1, Fig. S2;
Supplementary Information).

3.3. The effect of environmental variables on macroinvertebrate biotic
indices

Environmental variables significantly explained variation in taxon
richness (dry: AIC= 175.68, R2Pseudo= 0.27; wet: AIC=111.71,
R2Pseudo= 0.21) and TARISS scores (dry: AIC= 578.94, R2Pseudo= 0.51;
wet: AIC=233.27, R2Pseudo= 0.69), Table 2. A back ward followed by
forward selection identified different sets of significant environmental
variables for taxon richness and TARISS scores, but land-use (forest and
cropland, agricultural land, dense forest, and shrub land and thickets)
and substrate composition had a significant effect on all the biotic in-
dices in both seasons, Table 2. In the dry season communities were
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limited by nitrogen, water velocity and turbidity while in the wet
season chlorophyll-a, oxygen and phosphorous become important in
explaining variation in taxon richness and TARISS scores.

3.4. The influence of environmental variables on macroinvertebrate
assemblages

Generally, there was a significant effect of environmental variables
on the macroinvertebrate assemblages both in the dry (in-stream vari-
ables: F= 3.38, p=0.001; land-use: F= 3.165, p=0.002) and in the
wet (in-stream variables: F= 5.22, p= 0.001; land-use: F= 4.95,
p=0.01) seasons, Table 3. Local in-stream factors explained 36% and
32% of the total variation in the composition of macroinvertebrates in
the dry and wet seasons respectively. Land-use explained 23% and 21%

of the total variation in the composition of macroinvertebrates in the
dry and wet seasons respectively. Forward selection identified different
sets of significant environmental variables for macroinvertebrates be-
tween seasons, but substrate type (in-stream environmental factor) and
land-use (agricultural land and shrub land and thickets) had a sig-
nificant effect on macroinvertebrate assemblage in both seasons,
Table 3. The PCA ordination plot for the visualization of the relation-
ship between macroinvertebrate community composition (Hellinger-
transformed macroinvertebrates abundance data) and the most im-
portant explanatory variables retained in the forward selection plotted
as supplementary variables (separately for the in-stream and land-use
variables) for the dry and wet seasons are presented in Fig. 2.

Variation partitioning analyses revealed that the overall effect of in-
stream environmental variables and land-use on macroinvertebrate

Table 1
Results of Wilcoxon signed rank tests for environmental variables and macroinvertebrate biotic indices between dry and wet seasons in the Ruvu River catchment
showing the z-statistics and p-values. Significance levels are indicated as follows: ***= p < 0.001, ** = p < 0.01, and * = p < 0.05.

Variables Mean Values Wilcoxon rank sum test

Dry season Wet season z p

Environmental pH 7.67 7.71 −0.144 0.895
Electric Conductivity (μS/cm) 491.37 523.55 −0.137 0.899
Dissolved oxygen (mg/L) 6.64 6.85 −0.216 0.838
Temperature (°c) 23.81 20.26 −0.174 0.651
Chlorophyll a (μg/L) 90.05 32.04 -4.541 0.001***
Turbidity (ftu) 9.23 40.79 4.197 0.001***
Fluoride (mg/L) 0.24 0.16 -2.739 0.006**
Ammonia (mg/L) 0.15 0.18 −1.270 0.209
Nitrate (mg/L) 0.59 0.91 0.483 0.638
Orthophosphate (mg/L) 1.72 2.22 −0.745 0.462
Total Phosphorus (mg/L) 0.81 1.37 0.985 0.331
Total Nitrogen (mg/L) 0.89 1.53 1.754 0.042*
Chemical Oxygen Demand (mg/L) 15.90 30.10 2.823 0.005**
Average velocity (m/s) 0.38 1.29 4.541 0.001***
Average depth (m) 0.42 0.76 4.469 0.001***

Macroinvertebrates Abundance 237.48 41.41 1.714 0.046*
TARISS Score 64.15 33.33 -3.400 0.001***
Taxon richness 10.0 4.74 -3.747 0.001***

Table 2
Results of the generalized linear models with AIC and coefficients of determination R2pseudo, z-statistic and p-value of the most important explaining variables of the
selected models for macroinvertebrate taxon richness and TARISS score in the Ruvu River catchment. Models are based on a backward followed by forward selection
procedure aimed to maximize the potential variation in macroinvertebrate indices that can be explained by environmental variables. Significance levels are indicated
as follows: ***= p < 0.001, ** = p < 0.01, and * = p < 0.05. A (+) sign refers to a positive association, (-) sign refers to a negative association, and (ns) refers to
not significant.

Explaining Variables Season

Dry Wet

Richness TARISS Richness TARISS

AIC=175.68
R2Pseudo= 0.27

AIC=578.94
R2Pseudo= 0.51

AIC=111.71
R2Pseudo= 0.21

AIC=233.27
R2Pseudo= 0.69

z value p value z value p value z value p value z value p value

Dissolved oxygen ns ns ns ns ns ns 2.625 0.008 **
Chlorophyll-a ns ns 6.281 0.0001*** 1.858 0.036* ns ns
Turbidity −4.385 0.0001*** −2.354 0.038* ns ns ns ns
Ammonia −2.691 0.007 ** −4. 982 0.012* ns ns ns ns
Nitrate ns ns ns ns −1.761 0.044* ns ns
Total nitrogen 2.445 0.014* ns ns ns ns ns ns
Total phosphorus ns ns ns ns ns ns −2.628 0.008 **
Velocity −2.574 0.01* −2.830 0.005** ns ns ns ns
Substrate: GSM (gravel/sand/mud) −4.466 0.0001*** −6.622 0.0001*** −1.511 0.028* −3.655 0.0001***
Substrate: Stones (cobbles/boulders/bedrock) ns ns 9.395 0.001*** ns ns 2.669 0.007 **
% Agricultural land −4.168 0.001** −5.354 0.0001*** −3.386 0.002** −3.441 0.003**
% Dense forest ns ns 1.967 0.034* 2.936 0.006** ns ns
% Forest and cropland 4.239 0.001** 2.132 0.004** ns ns 2.271 0.001**
% Shrub land −1.697 0.032* ns ns ns ns −1.914 0.018*
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community composition was similar in the dry season, Fig. 3. In the wet
season, the direct effect of land-use on macroinvertebrate community
composition was relatively higher than the in-stream environmental
conditions, Fig. 3. A considerable fraction of compositional variation in
macroinvertebrate community was explained by shared effects between
in-stream environmental conditions and land-use factors.

3.5. Indicator taxa

Hierarchical clustering diagrams for site classification are presented
in Fig. S3 (Supplimentary Information). In the dry season, three families
(Baetidae, Potamonautidae and Heptageniidae) were indicators of good
water quality (see Table 4). Baetidae had the highest indicator value
(IndVal= 0.929), occurring in all good quality sites (B= 1.000) and
was largely restricted to it (A=0.8628). Potamonautidae and Hepta-
geniidae occurred only in good water quality sites (A=1.000). Thiar-
idae was an indicator taxon for intermediate water quality while Hir-
udinea and Hydrophilidae were indicators for poor water quality.
Thiaridae occurred in all sites belonging to the intermediate water
quality class (B=1.000) and was largely (but not completely) re-
stricted to it (A= 0.9541). Hirudinea and Hydrophilidae occurred in
poor water quality sites only (A= 1.000), though not all poor water
quality sites were housing these families (B=0.444). In the wet season,
three families (Baetidae, Hydropsychidae and Heptageniidae) were in-
dicators of good water quality. Baetidae occurred in all good water
quality sites (B=1.000) and they were almost completely restricted to
these sites (A= 0.9763). Hydropsychidae and Heptageniidae occurred
only in sites with relatively good water quality (A= 1.000). Chir-
onomidae were an indicator of poor water quality. Chironomidae oc-
curred in all sites with relatively poor water quality (B= 1.000) but
were not completely restricted to these sites (A=0.6079).

4. Discussion

In this study, we assessed seasonal variation in benthic macro-
invertebrate assemblages and water quality in the Ruvu River catch-
ment in northeastern Tanzania. Our findings indicate that physico-
chemical water quality and macroinvertebrate community composition
varied between seasons and that different sets of indicator taxa for
water quality emerge in different seasons. Both in-stream environ-
mental conditions and land-use factors influenced macroinvertebrates,
but their relative importance also depended on the season. In the wet
season macroinvertebrates seem to be limited by chlorophyll-a, oxygen
and phosphorous while in the dry season, when water flow is lower,

nitrogen and turbidity become important.
We initially hypothesized that land use effects on river quality may

be more pronounced in the rainy season due to higher surface runoff
from agricultural land. This seems to be confirmed as macro-
invertebrates were less abundant and showed lower diversity in the wet
season. This may seem counter intuitive given that water volumes, and
thus available habitat is larger in the wet season. However, most likely
the higher nutrient concentrations (particularly phosphate) and tur-
bidity levels eliminate some sensitive taxa during the wet season (e.g.,
Heptageniidae and Perlidae). This trend is confirmed in other studies of
tropical rivers (Harding et al., 1999; Ndaruga et al., 2004; Bere et al.,
2016; Nhiwatiwa et al., 2017a). Although diversity was higher and
water quality was better, also in the dry season there was substantial
variation in macroinvertebrate assemblages among sites, but these were
driven by different variables. Lower water flow in this season due to
lower precipitation and increased water abstraction via irrigation may
lead to accumulation of nitrogen containing nutrients in some river
sites and low oxygen conditions that can locally decrease water quality
and exclude some taxa. Some taxa such as Hirudinea and Potamonau-
tidae emerge as indicator species for poor and good water quality re-
spectively in this season but not in the wet season. This is consistent
with our second hypothesis and indicates that different selection pres-
sures limit the occurrences and resulting diversity of macro-
invertebrates in both seasons. Seasonal variation in discharge leads to
differences in wetted perimeter, hydraulic conditions, and habitat
availability which may also affect benthic macroinvertebrates (Dallas,
2004). Furthermore, the differences in macroinvertebrate community
composition between seasons can also be partly due to the fact that
different taxa show differential success between seasons according to
their particular resilience or resistance traits (such as colonization and
establishment abilities) (Blanchette and Pearson, 2013; Botwe et al.,
2015).

The RDA and generalized linear models showed that water velocity,
substrate type, turbidity and nutrients were the most important local in-
stream environmental variables that explained macroinvertebrate
community structure. Stream water velocity has been indicated in many
studies to be strongly related to the community composition of benthic
macroinvertebrates (e.g., Poff et al., 1997; Sandin and Johnson, 2004;
Allan and Castillo, 2007; Belmar et al., 2013; Pan et al., 2013). This is
because, the flow velocity configures stream morphology, bed stability,
and consequently the availability of aquatic habitats for in-stream or-
ganisms (Belmar et al., 2013). For example, high flow velocity is re-
garded not only to scour macroinvertebrates directly but also de-
termines other habitat conditions by influencing the transport of

Table 3
Results of the RDA analyses showing the global F, p-value and coefficients of determination (R2Adjusted) of the full models, and F-statistic and p-value of the selected
important environmental variables explaining macroinvertebrate assemblages in the Ruvu River catchment. Models are based on a forward selection procedure
aimed to maximize the potential variation in macroinvertebrate assemblages that can be explained by environmental variables. Significance levels are indicated as
follows: *** = p < 0.001, ** = p < 0.01, and * = p < 0.05.

Season Explaining Variable F p value Global F p value (global F) R²Adjusted

Dry Instream variables 3.38 0.001 ** 0.36
Substrate 4.99 0.002**
Turbidity 2.62 0.011*
Ammonia 2.64 0.015*
Velocity 2.32 0.021*
Land-use variables 3.165 0.002** 0.23
% Agricultural land 7.56 0.002**
% Shrub land and thickets 2.56 0.021*
% Forest and cropland 2.03 0.034*

Wet Instream variables 5.22 0.001 ** 0.32
Substrate 2.01 0.040*
Chlorophyll-a 11.97 0.001**
Land-use variables 4.95 0.01* 0.21
% Agricultural land 6.32 0.001**
% Shrub land 2.53 0.018*
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sediments (Poff et al., 1997; Sandin and Johnson, 2004; Belmar et al.,
2013; Pan et al., 2013). As such, habitats are more stable during the dry
season, thereby allowing longer time macroinvertebrates colonization
and subsequently increment of the species number and abundance
(Principe et al., 2007). In addition, water velocity also affects in-stream
food delivery and oxygen content (Sandin and Johnson, 2004; Allan
and Castillo, 2007) which directly affects the existence of in-stream
biota.

Substrate type was important both in the dry and the wet season.
Macroinvertebrate biotic indices were positively correlated with the
stone substratum while negatively associated with GSM substratum.

Stone substratum, particularly cobbles, has been indicated to support a
large number of benthic macroinvertebrate taxa due to the availability
of diverse microhabitats that provide refuge from currents and preda-
tion, attachment for filter-feeding taxa, food for herbivores and detri-
tivores, and exit points for emerging insects with aerial adult stages
(Brooks et al., 2005; Allan and Castillo, 2007; Pan et al., 2013; Jun
et al., 2016). In contrast, habitats with fine substrate support few
macroinvertebrate taxa: this is related to habitat instability, detritus
shortage, and unavailability of refugia (Principe et al., 2007; Chakona
et al., 2008). Similarly, several other studies conducted elsewhere have
reported a strong correlation between substrate type and

Fig. 2. Principal component analysis ordination bi-plots illustrating the relationship between macroinvertebrate assemblages and the most important explanatory
variables plotted as supplementary variables: (a and b) in-stream environmental variables, and (c and d) land use variables in the dry and wet seasons. Only taxa with
more than 30% contribution to the total variation are plotted. Baet= Baetidae, Caen=Caenidae, Heptag= Heptageniidae, Ephem=Ephemerythidae,
Leptop=Leptophlebidae, Hydrop= Hydropsychidae, Ecnom=Ecnomidae, Leptoc= Leptoceridae, Philop=Philopotamidae, Hydrop= Hydroptilidae,
Aesh=Aeshinidae, Libell= Libellulidae, Coenag=Coenagrionidae, Chlorocy=Chlorocyphidae, Olig=Oligochaeta, Hirud= Hirudinea, Physid= Physidae,
Lymnae= Lymnaenidae, Planor=Planorbidae, Thiar= Thiaridae, Sphaer= SphaeriidaeHydrach=Hydrachnidiae, Gyrin=Gyrinidae, Elmid= Elmidae,
Psephen=Psephenidae, Helod= Helodidae, Hydroph= Hydrophilidae, Torridin= Torridincolidae, Noter=Noteridae, Potamon=Potamonautidae,
Atyid=Atyidae, Atheric=Athericidae, Taban=Tabanidae, Culic=Culicidae, Chiron=Chironomidae, Tipul= Tipulidae, Simul= Simuliidae,
Scyomyz= Scyomyzidae, Dixid=Dixidae, Psychod=Psychodidae, Ceratop=Ceratopogonidae, Empid= Empididae, Gerrid=Gerridae, Veliid=Veliidae,
Naucor=Naucoridae, Pleid=Pleidae, Nepid=Nepidae, Hebrid= Hebridae, Corixid=Corixidae, Pyralid= Pyralidae, Perlid= Perlidae,
Notonem=Notonemouridae, Planar= Planaridae, Turb=Turbidity, GSM=Gravel/Sand/Mud, RV=Ruvu River, RD=Dehu River, RH=Ghona River,
RS= Soko River.
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macroinvertebrate communities (Ciutti et al., 2004; Sandin and
Johnson, 2004; Li et al., 2012; Jun et al., 2016). Li et al. (2012) in-
dicated that substratum degradation can perturb the macroinvertebrate
community even when water quality remains good. In our study area
fine sediment from agricultural land can cover valuable gravel and
cobble habitat for macroinvertebrates. Hence, part of the substrate ef-
fect we detected in this paper may still be traced to negative impacts of
agriculture.

Our study showed that agricultural and shrub land and thickets
land-use types were the most important land use variables influencing

macroinvertebrate assemblages in both seasons. The responses were
reflected in the declines in taxon richness and TARISS scores with
agricultural land-use. These relationships were consistent with other
studies describing changes in macroinvertebrate communities in agri-
cultural catchments (Richards et al., 1996; Allan, 2004; Collier, 2008;
Magierowski et al., 2012; Nhiwatiwa et al., 2017a). These patterns may
be driven by multiple mechanisms common to all agricultural land-use,
such as changes in water quality, habitat alteration, loss of riparian
zones and dominance of fine sediments (Magierowski et al., 2012;
Botwe et al., 2015). The remaining unexplained variation in macro-
invertebrate assemblages might be a result of other gradients such as
pesticide and heavy metal concentrations, biotic interactions (Al-shami
et al., 2011; Nhiwatiwa et al., 2017a), or a set of multiple stressors
(Dalu et al., 2017b) which were not quantified in our study.

The variation partitioning showed that in-stream environmental
variables and land-use manage to explain similar amounts of variation
in macroinvertebrate communities in the dry season. In contrast, the
unique effect of land-use explained a substantial fraction of variation in
macroinvertebrate assemblages in the wet season. This pattern could be
realized through effects of land-use on macroinvertebrate communities
via run-off (carrying sediment and various nutrients from the catch-
ment area into the river system) in the wet season (Karaouzas et al.,
2007). In addition, agricultural activity which appeared to be the main
stressor for macroinvertebrates in the catchment, further intensify
during the wets season. The variation partitioning shows that a sub-
stantial fraction of the variation is jointly explained by these two sets of
variables. This fraction reflects that some land-use variables and in-
stream environmental variables tend to be correlated in the field and
thus their contribution to biotic responses cannot be separated. Hence it
represents variation in macroinvertebrates that is explained by the
variables, but we cannot statistically attribute the effect to

Fig. 3. Unique and shared contributions of in-stream environmental variables and land-use variables on the macroinvertebrate assemblages in the (a) dry and (b) wet
seasons. Significance levels are indicated as follows: *** = p < 0.001, ** = p < 0.01, and * = p < 0.05. Percentages represent explained variation by each
component.

Table 4
Results of the macroinvertebrate indicator taxon analysis listing indicator
species for each water quality class (G= good, IM= intermediate and
PR=poor) and for each season. Indicator values and associated P values are
provided as well as the specificity (A) and sensitivity (B) scores. Significance
levels are indicated as follows: *** = p < 0.001, ** = p < 0.01, and * =
p < 0.05.

Season Water
Quality

Indicator taxa Indicator
Value

p value A B

Dry G Baetidae 0.929 0.008** 0.8628 1
Potamonautidae 0.816 0.016* 1 0.6667
Heptageniidae 0.73 0.043* 1 0.5333

IM Thiaridae 0.977 0.003** 0.9541 1
PR Hirudinea 0.667 0.044* 1 0.4444

Hydrophilidae 0.667 0.045* 1 0.4444

Wet G Baetidae 0.988 0.001 ** 0.9763 1
Hydropsychidae 0.886 0.003 ** 1 0.7857
Heptageniidae 0.845 0.035 * 1 0.7143

PR Chironomidae 0.78 0.029* 0.6079 1
IM+PR Chironomidae 0.928 0.002** 0.9849 0.875
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environmental or land-use variables, respectively.
Although the indicator taxon analyses showed that Baetidae and

Heptageniidae were indicator taxa of good water quality conditions in
both seasons, but there was a substantial variation in indicator taxon
between seasons. For example, Hydropsychidae and Potamonautidae
showed to be an indicator taxon of good water quality conditions in the
wet and dry seasons respectively. Several studies have shown that
Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa are sensitive to
pollution (Rosenberg and Resh, 1993; Barbour et al., 1999; Soininen
and Kononen, 2004; Masese et al., 2009; Al-shami et al., 2011).
Therefore, their presence is often an indication of good water quality
conditions, similar to the present study findings. A study of Kaaya et al.
(2015), however, indicated Potamonautidae to be tolerant of pollution
with a lower TARISS score, while we found them to be indicative of
good water quality conditions. This family likely comprises both pol-
lution tolerant and sensitive species. Judging water quality in the re-
gion based on the presence of members of this family is therefore not
possible unless differential responses of genera and species within this
family are known. Chironomidae was an indicator of poor water quality
conditions in the wet season while Hirudinea showed to be indicator
taxa of poor water quality condition in the dry season. When streams
are disturbed, taxa that are sensitive to pollution will be eliminated,
leaving communities to be dominated by only taxa that are resistant
(i.e., able to survive the impacts) or resilient (i.e., having efficient re-
covery mechanisms). Chironomids, for example, are capable of sur-
viving low dissolved oxygen levels and high turbidity and can exploit
excess nutrients, hence dramatically increase in abundance in polluted
water (Marques et al., 1999; Özkan et al., 2010). This explains why they
appear as indicator taxa in the wet season but not in the dry season,
when nutrients and turbidity are not an issue.

The macroinvertebrate biotic index developed for Tanzania (i.e.
TARISS) was shown to be a complementary source of information
compared to richness and analyses of composition. In the predictive
model, TARISS was significantly affected by several variables that had
no effects on richness. Hence, it does what it was intended for: pro-
viding a metric that integrates both richness and known sensitivity of
taxonomic groups. A limitation of this study is that only two seasons
were studied and, although they were quite representative in terms of
typical weather conditions, longer-term monitoring would be required
to validate to what extent the reported dynamics are indeed general. It
would also be valuable to know to what extent water quality responds
to particularly dry or wet years and to what extent variation in agri-
cultural runoff among years has strong effects on biota.

The study highlights that current agricultural practices are indeed in
all likelihood affecting the macroinvertebrate assemblages in this river
and that monitoring them via their indicator species may help to
identify sites with poor water quality where remediation actions can be
taken. Riparian buffer zones may help to alleviate some of the observed
negative effects of agricultural activities on the river system in the wet
season while limiting irrigation return flows may improve water quality
in the dry season. In addition, macroinvertebrate monitoring may also
help to detect effects of extreme weather events expected under current
scenarios of global climate change. Many perennial rivers are likely to
be become non perennial and this risk also exists for the Ruvu river
catchment. During the dry parts of the year some sections of the river
no longer have flowing water with stagnant pools remaining with poor
water quality. In fact, many rivers in the area currently suffer potential
degradation due to increased water abstraction, nutrient enrichment
and siltation resulting from land-use change mainly for agricultural
activities and settlement. The combination with climate change may
lead to further deterioration of water quality with serious consequences
for the growing population that is predominantly reliant on river water
as drinking water and for irrigation purposes.

5. Conclusion

The study generated some new generic insights into the ecology of
this type of tropical rivers by showing that different indicator species as
well as different drivers of water quality and macroinvertebrates can be
important during dry and wet seasons. Using a combined multivariate
approach of indicator species analysis and biological indices allowed a
more profound ecological diagnosis of the ecological condition of the
Ruvu River and (re)confirmed the usefulness of benthic macro-
invertebrates in monitoring schemes of river systems. Overall, this
study advocates for a reinstatement of an effective nation-wide river
monitoring system in Tanzania with monitoring taking place both in the
dry and in the wet season. In addition, the poor current state of many
river sites urges for the development of awareness programs coupled to
possible financial compensations for farmers to reduce surface runoff
via the establishment of effective riparian buffer zones.
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