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ARTICLE

Is the protected area coverage still relevant in protecting the Southern 
Ground-hornbill (Bucorvus leadbeateri) biological niche in Zimbabwe? 
Perspectives from ecological predictions
Bester Tawona Mudereri a,b, Tavengwa Chitata c, Abel Chemura d, Joseph Makaure e, 
Concilia Mukanga b,f and Elfatih M. Abdel-Rahman a,g

aInternational Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya; bDepartment of Animal and Wildlife Science, Midlands State 
University, Gweru, Zimbabwe; cDepartment of Geography, The University of Sheffield, Sheffield, UK; dClimate Resilience: Research Department 
II, Postdam Institute for Climate Impact Research (PIK), Potsdam, Germany; eDepartment of Environmental and Forest Biology, State University 
of New York, College of Environmental Science and Forestry, Syracuse, USA; fSchool of Life Sciences, University of Kwazulu-Natal, 
Pietermaritzburg, South Africa; gDepartment of Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan

ABSTRACT
Examining the suitability of landscape patches for endangered species enhances critical insights 
and indicators into the processes of population structure, community dynamics, and functioning in 
ecosystems particularly in protected areas (PAs). While PAs are the cornerstone in biodiversity 
conservation, there is debate on their efficacy to retain their conservation superiority over unpro-
tected areas under climate change. In the present study, we examined the spatial and temporal 
effectiveness of PAs at maintaining suitable habitat for the “vulnerable” Southern Ground-hornbill 
(SGH), Bucorvus leadbeateri compared with the unprotected areas in Zimbabwe. We used 
a landscape-scale analysis of 182 PAs, their surrounding buffer zones, and unprotected areas 
coupled with three machine learning models (maximum entropy: MaxEnt, random forest, and 
support vector machines) to simulate SGH habitat suitability. Bioclimatic, vegetation seasonality 
and terrain variables were used as predictors against SGH “presence-only” observations and the 
models were projected for 2050 as future climatic scenarios (i.e. representative concentration 
pathways: RCP2.6 and RCP8.5). The true skill statistic (TSS) and area under the curve (AUC) were 
used to evaluate the performance of the modeling framework. Our results show that the PAs 
network in Zimbabwe is extremely relevant for the conservation of SGH, with 8% of the suitable 
habitat within PAs projected to become unsuitable by 2050. Higher levels of protection status 
resulted in higher levels of suitable habitat for the SGH while the suitability of eastern-based PAs 
showed a decrease and the western-based PAs will potentially increase in suitability. Thus, con-
servation strategies should take the eastern PAs range contraction and associated westward shift 
into account. The established potential increase in suitability outside the PAs network (23%–31%) 
might increase conflicts between agriculture and conservation. We, therefore, suggest an 
expanded cross-boundary institutional alliance and policy development with all stakeholders to 
implement a holistic conservation plan. Our work demonstrates the importance of combining 
multi-source remotely sensed data in predicting habitat suitability for endangered species such as 
the SGH as key indicators of biological conservation and PAs’ effectiveness.
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1. Introduction

Understanding the drivers of habitat use and the 
suitability of landscape patches to bird species is 
crucial in conservation biology as it offers critical per-
ceptions of the processes influencing population 
dynamics, community structure, and functioning in 
ecosystems (Muposhi et al. 2016). Landscape use by 
most avian species is assumed to be adaptive, with an 
inclination toward areas with conducive vegetation 
cover, microclimates, and abundant dietary 

requirements (Moreno et al. 2011). Spatial and tem-
poral habitat suitability and preferential use may 
further be inclined to physical ecosystem modifica-
tions or climate variability (Mudereri et al. 2020a). 
Similarly, earlier studies show that habitat selection 
is also determined by environmental quality, compe-
tition, predation, water availability, and anthropo-
genic disturbances (McCarthy, Dwyer, and Mokany 
2020; Muposhi et al. 2016). These spatial and temporal 
dynamics promote heterogeneity in ecosystems that 
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ultimately make them suitable for most bird species in 
space and time (Muposhi et al. 2016).

Additionally, global climate and land-use changes 
are likely to trigger numerous species shifts into or 
outside the “safe hubs” of the boundaries of pro-
tected areas (PAs), leading to large species composi-
tion turnovers (McCune, Van Natto, and MacDougall 
2017; Zhang et al. 2019). PAs are used all over the 
world as locations that receive legal conservation and 
protection because of their recognized natural, eco-
logical or cultural values that are critical for in-situ 
biodiversity conservation, and habitat protection 
(Manish and Pandit 2019). As of 2016, a total of 202 
467 terrestrial PAs were recognized globally, covering 
approximately 14.8% of the earth’s geographic area 
(UNEP-WCMC and IUCN 2016). While PAs are used as 
an important tool in biodiversity conservation, there is 
an ongoing debate on whether they will retain their 
ability to conserve biodiversity effectively and effi-
ciently under climate change, as species ranges shift 
(Eklund et al. 2016; Poor et al. 2019; Lecina-Diaz et al. 
2019; Guerra, Rosa, and Pereira 2019). Multiple studies 
indicate some positive effects of PAs on both terres-
trial and marine species under different climate sce-
narios (Gong et al. 2017; Zomer et al. 2015). However, 
these case studies do not represent most PAs, parti-
cularly those in Africa where climate change impacts 
are likely to be severe (McCarthy, Dwyer, and Mokany 
2020; Mudereri et al. 2020b). Also, African nations 
tend to have limited budgetary resources and 
research available to comprehensively protect all the 
species, particularly avian species which exhibit high 
sensitivity to environmental change (Lecina-Diaz et al. 
2019; Wakelin et al. 2018).

Birds are diverse in taxa within the animal king-
dom. However, they are easily driven to extinction by 
small anthropogenic or natural changes in the envir-
onment (Wakelin et al. 2018). Therefore, they can be 
used as key indicators of small environmental 
changes, and thus can act as early warning mechan-
isms for environmental degradation (Kylin, Bouwman, 
and Evans 2011). Due to the sensitivity of the avian 
taxa to natural and anthropogenic changes, a large 
proportion of bird species are in danger of extinction 
(Araujo et al. 2005). African bird species have already 
shown massive changes in their distributions in 
recent decades, often enlarging or contracting their 
ranges over several hundred kilometers (Walther and 
van Niekerk 2015). Thus, climate change has greatly 

influenced the distribution of various bird species, 
and future climate change will alter the landscapes 
that will result in the change of habitat, range, dis-
tribution, and migration patterns of many bird species 
(Araujo et al. 2005; Mudereri et al. 2020a). These 
unprecedented shifts continuously challenge and 
question the effectiveness of current conservation 
efforts through PAs (Lecina-Diaz et al. 2019; Guerra, 
Rosa, and Pereira 2019; McCune, Van Natto, and 
MacDougall 2017).

In this study, we evaluate and match the current 
protected area regime and its spatial coverage to the 
ecological niche of the Southern Ground-hornbill 
(SGH) Bucorvus leadbeateri, a threatened bird species, 
using Zimbabwe as a case study. Modeling the dis-
tribution and population of species has proved to be 
a valuable approach in efforts to conserve birds and 
other animals (Nyakarahuka et al. 2017; Zhang et al. 
2019; Feng, Liu, and Tong 2018; Qi, Zhao, and Feng 
2010). Niche modeling assumes that the niche of the 
species is constant over space and time and uses the 
“presence” or “absence” data with the corresponding 
bioclimatic and environmental variables and mathe-
matical algorithms to determine potential habitat 
suitability for a species (Wang et al. 2018). Herein, 
we use three machine learning techniques for ecolo-
gical niche modeling namely maximum entropy 
(Phillips, Anderson, and Schapire 2006), random forest 
(RF: Breiman 2001), and support vector machines 
(SVM: Vapnik 1979) to predict and project the niche 
of the SGH to a new environment i.e. under climate 
change.

SGH has been reported by other studies as very 
reliant on protected areas for their reproduction and 
survival (Broms et al. 2014; Combrink et al. 2017). 
Hence, the modeling product is matched with the 
current spatial extent of the designated PAs to create 
an empirical perspective of the effectiveness of the 
PAs to safeguard the habitat and niche of the SGH in 
Zimbabwe. These selected algorithms were used in 
this study because they have been widely used in 
conducting complex output predictions and provide 
relatively high modeling accuracies compared to 
other machine learning techniques (Abdel-Rahman, 
Ahmed, and Ismail 2013; Mosomtai et al. 2016; 
Sarvia, De Petris, and Borgogno-Mondino 2020).

The SGH inhabits savannas mostly in Africa and is 
presently listed as “vulnerable” under the IUCN red list 
because of fragmented habitats, degraded landscapes, 
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and persecution (BirdLife International 2020). In South 
Africa, where most studies on the species have been 
carried out, it is listed as endangered, similar to the 
status in Lesotho, Namibia, and Eswatini. The status of 
the SGH in Kenya, Tanzania, Malawi, Zambia, 
Zimbabwe, and Mozambique, requires conservation 
interventions to help increase their numbers. The 
severe fragmentation of landscapes in and around 
their preferred forage of open woodlands, savannah 
grasslands, and woodlands increases the chances of 
failure in nesting and breeding (Trail 2007; Witteveen 
et al. 2013). The SGH is a terrestrial, carnivorous, and 
cooperative breeder generally occurring in groups of 
between 2 and 11 birds, whose sexual maturity and 
breeding age takes very long to attain i.e. between 
4–10 years (Combrink et al. 2017). Thus, the population 
decrease is made worse by this slow reproduction of 
the bird as they reproduce in breeding groups and 
produce one chick in two to three years (Kemp and 
Begg 1996).

In Zimbabwe, the fast-rising human population, 
frequent droughts, and conflicting policies are 
degrading or modifying previously pristine habitats 
leading to the destruction of large trees necessary for 
the reproduction of the SGH (Chiweshe 2007; 
Witteveen et al. 2013). Further, human and bird con-
flicts occurring inside and outside of PAs are also 
a major threat to the SGH within buffer zones of 
protected areas and beyond. These conflicts include 
deforestation and agricultural expansion which lead 
to losses in nesting sites, and unsustainable harvest-
ing of the SGH for traditional medicine (Chiweshe 
2007). Also, due to an increase in the elephant popu-
lation in PAs, the elephants have been reported to be 
causing significant structural changes of vegetation, 
with downstream impacts on bird species reliant on 
some of these tree species (Gandiwa et al. 2011; Valeix 
et al. 2011). Lately, severe droughts that have fre-
quented southern Africa in the last decade have also 
caused a significant loss in the population of SGH in 
Zimbabwe (Witteveen et al. 2013).

In this study, we hypothesized that PAs would 
effectively represent and hence maintain a suitable 
habitat for SGH than unprotected areas under 
a changing climate. Through quantifying the change 
in modeled habitat suitability instead of the changes 
in abundance, we examined whether the habitat 

remained more suitable within PAs (with varying 
degrees of protection) than surrounding areas under 
the projected climate changes. We assumed that the 
structure and systems determining the effectiveness 
of the PAs is the degree of shield they provide to the 
suitable habitat. This study is relevant and timely as 
most studies on the SGH have been conducted in 
South Africa while very few studies and surveys have 
been conducted in Zimbabwe. There is therefore 
a great need for more recent work and consideration 
to this vulnerable species to bring to the attention of 
decision-makers and conservationists the need to 
conserve the remaining suitable habitat.

2.Methodology

2.1. Study area

The effectiveness of the protected area approach to 
conserving SGH suitable habitat was examined in 
Zimbabwe, a southern African country encompassing 
~ 390 753 km2 land area. The country occurs within 
latitudes 15.6° and 22.4° S and longitude 25.2° and 
33.1° E (Mudereri et al. 2020b). The country has five 
agro-ecological regions (Figure 1) classified based on 
mean annual rainfall, length of the agricultural grow-
ing season, and soil type (Mugandani et al. 2012). 
Agroecological region “V” receives the lowest mean 
annual rainfall (400 mm) while agroecological region 
“I” located on the eastern border with Mozambique 
receives the highest mean annual rainfall (1 
200 mm). Generally, the climatic conditions of the 
country are subtropical, determined by latitude dif-
ferences, which distinguishes the wide-ranging rain-
fall and temperature patterns. The mean annual 
temperature ranges from 16° C in regions “I” and 
“II” to ~ 26–35° C in the southern Lowveld. 
Zimbabwe experiences a short cold, dry season 
between May and September, while the period 
November to April is marked by heavy rainfall.

Approximately 182 pieces of land of varying size 
and protection status covering ~13% of this total land 
area in Zimbabwe, are designated as PAs (Figure 2). 
These areas predominantly exist in agroecological 
region “V” where conventional crop agriculture is 
limited due to unsuitable climatic conditions. The 
exact estimated population of the SGH is relatively 
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Figure 1. Location of Zimbabwe in Africa and the relative location and boundaries of the five agro-ecological regions of the country 
which characterize the study area. The map was developed using QGIS software (https://www.qgis.org/en/site/). Adapted from 
(Mudereri et al. 2020b).

Figure 2. Location of protected areas in Zimbabwe. The red dots show the distribution of the SGH collated over many years through 
the global biodiversity information facility (GBIF). The map was developed using QGIS software (https://www.qgis.org/en/site/).
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unknown but is registered as decreasing across its 
entire African range (BirdLife International 2020)

2.2. SGH occurrence data collection

The baseline SGH distribution data in Zimbabwe 
(n = 380) were collected from the Global Biodiversity 
Information Facility (GBIF: GBIF 2019). The GBIF 
(https://www.gbif.org) is one of the major online 
access point databases providing species occurrence 
data from billions of biological specimen records 
obtained through field observations by institutions 
across the world (Zhang et al. 2019). The data were 
filtered to eliminate duplicate samples, samples with-
out detailed location information, and those that 
were too old (year < 1990). Further, to reduce sam-
pling bias, only one sample was kept for each 1 km 
x 1 km grid to match the resolution of the environ-
mental variables as suggested by Phillips et al. (2009). 
The latitude and longitude of the retained samples 
(n = 125) with detailed location information were 
verified on the Google Earth platform (https://www. 
google.com/earth/). The retained independent occur-
rences of SGH were saved in the shapefile (.shp) for-
mat and used in the modeling.

2.3. Predictor variables

Predictor variables (n = 35) were grouped into two 
main categories, i.e. remotely sensed variables 
(n = 16) and bioclimatic (n = 19), (Tables S1 and S2).

2.4. Bioclimatic variables
Bioclimatic variables are a set of standardized datasets 
derived from precipitation and temperature values 

into ecologically useful variables for primary produc-
tion-based species modeling. These variables, there-
fore, represent annual tendencies such as average 
annual temperature and precipitation values and 
their variations, seasonal characteristics such as tem-
perature and precipitation ranges in the wettest, 
driest, hottest, and coldest quarters and extremes 
(O’Donnell and Ignizio 2012). Bioclimatic conditions 
particularly temperature and precipitation influence 
the availability of feed, nesting success, thermoregu-
lation, foraging behavior, and reproduction regimes 
in many bird species including the SGH. This results in 
the choice or preference of suitable habitats by the 
SGH. However, these areas with the suitable condi-
tions preferred by the SGH are likely to change soon 
because of climate change. Hence, the new climatic 
conditions induced by climate change will ultimately 
determine the potential shift in habitat for this spe-
cies. The 19 bioclimatic variables (Table 1 and S1) used 
in this study were downloaded from the WorldClim 
platform (www.worldclim.org) at ~1 km x 1 km spatial 
resolution (Booth 2018; Fick and Hijmans 2017). Two 
of the four representative concentration pathways 
(RCPs) set by the intergovernmental panel on climate 
change (IPCC) using the total radioactive forcing of 
values 2.6, 4.5, 6, and 8.5 watt/m2 (IPCC 2014) were 
used as future climatic scenarios. Specifically, the cur-
rent bioclimatic data (1950–2000) and a fourth ver-
sion of the community climate system model (CCSM4) 
derived from a one-time step i.e. 2050 (average of 
predictions for 2041–2060) of the future climate data 
on the minimum (based on the Paris Agreement tar-
gets) and maximum (worst case) emission i.e. RCP2.6 
and RCP8.5 were used to capture the whole range of 

Table 1. Bioclimatic and remotely sensed variables used in the final habitat suitability models for the SGH and their (variance inflation 
factor) VIF values.

Variable name Variable description Unit VIF value
Bioclimatic variables

Bio3 Iso-thermality (Bio2/Bio7) (×100) 2.32
Bio4 Temperature seasonality (standard deviation ×100) 2.33
Bio5 Maximum temperature of the warmest month 0C 7.67
Bio15 Precipitation seasonality (coefficient of variation) 8.41
Bio18 Precipitation of warmest quarter mm 5.62

Land surface temperature
LST Land surface temperature K 1.17

Seasonality variables
Base value Average minimum enhanced vegetation index (EVI) value EVI value 5.20
End of season Time at the end of season EVI value 2.95
Length of season Time-lapse from start to end of season Days 5.30
Start of season Time of season start EVI value 2.96

Topography variables
Aspect Slope direction Degrees 1.14
Elevation Ground height above sea level m 5.21
Hill shade Shading the sun effect 1.15
Slope Ground steepness % 1.64
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future climate possibilities. The data were clipped to 
the Zimbabwean country boundary while the pixel 
size (250 m x 250 m) was matched to the remotely 
sensed variables pixel size and extents.

2.5. Remotely sensed variables
Three categories of the remotely sensed variables 
were used in this analysis namely: land surface tem-
perature (LST), topography, and vegetation phenolo-
gical (vegetation seasonality) variables (Table 1). 
These variables were selected to test the influence 
of various environmental determinants on the distri-
bution of SGH. All the remotely sensed variables were 
standardized to the 250 m x 250 m pixel size using the 
nearest neighbor method. The nearest neighbor 
approach assigns a value to each “corrected” pixel 
from the nearest “uncorrected” pixel. The advantages 
of nearest neighbor include simplicity and the ability 
to preserve original values in the unaltered scene.

The “daytime” Land Surface Temperature Climate 
Modeling Grid (LST_Day_CMG) available from https:// 
lpdaac.usgs.gov/products/mod11c2v006/ was used 
to represent the LST (Wan, Hook, and Hulley 2015). 
The “multi-day” MOD11C2 LST product of 5.6 km 
x 5.6 km spatial resolution available from the year 
2000 to the present was used. It was hypothesized 
that the surface fluxes represented by the LST would 
influence the general foraging, availability of feed, 
reproduction, and thus, occurrence and habitat suit-
ability of the SGH. The topography variables were 
generated from the Shuttle Radar Topographic 
Mission (SRTM) data which are available at ~ 90 m 
pixel size digital elevation model (DEM) with a vertical 
error of less than 16 m (CGIAR-CSI 2019). Aspect, hill- 
shade, and slope were then derived from the DEM 
using the “terrain analysis” plugin in QGIS (QGIS 
Development Team 2019). Elevation, slope, hill- 
shade, and aspect were expected to influence the 
occurrence and propagation of SGH by affecting the 
vegetation and the angle, direction, and intensity of 
the sun on the earth’s surface.

Vegetation type determines the availability of trees 
for nesting and foraging sites for the SGH (Kemp and 
Begg 1996). The specific tree species information was 
not available, hence the vegetation phenology was 
used as a proxy for the availability of trees for nesting. 
The TIMESAT software (Eklundh and Jönsson 2017) 
was used to derive the seasonal vegetation dynamics. 
The 250-m MODIS 16-day enhanced vegetation index 

(EVI) time-series composites obtained between the 
years 2012 and 2018 were used as inputs into the 
TIMESAT model. This period coincided with most 
“presence” points obtained from GBIF. The selection 
of EVI over the commonly used normalized vegeta-
tion index (NDVI) was based on the ability of EVI to 
enhance vegetation spectral signal and improve spec-
tral sensitivity to high biomass, which is the major 
weakness of NDVI that tends to saturate in high bio-
mass regions (Zoungrana et al. 2015). In addition, EVI 
reduces background and atmospheric noises and is 
more responsive to leaf area index, canopy type, 
canopy architecture, and plant physiognomy. 
TIMESAT computes the time-series and performs 
curve smoothing functions to extract the seasonality 
parameters from the multi-temporal data using estab-
lished equations (Eklundh and Per 2017). This sequen-
tially decreases the effects of residual signal noise that 
exists within the raw EVI time-series data (Hentze, 
Thonfeld, and Menz 2016). In this study, the Savitzky- 
Golay filtering equation (Eklundh and Per 2017) was 
used for fitting, smoothening curves and to remove 
outliers using a 3- and 5-point window over 2 fitting 
steps, 3.0 adaptation strength without a spike or 
amplitude cutoff, a 0.0 season cutoff, and a 20% 
threshold for the beginning and end of the season 
following a procedure described in Mudereri et al. 
(2020b). In total, 11 vegetation phenological variables 
were used in this study (Supplementary data). 
A detailed explanation of the TIMESAT algorithm 
and outputs are available from Eklundh and Jönsson 
(2017).

2.6. Variable selection

Collinearity amongst the predictor variables in most 
ecological niche models causes instability and volati-
lity of the model parameterization and performance 
(Dormann et al. 2013). A two-stage variable quality 
evaluation criterion using a multicollinearity degree 
was employed through the variance inflation factor 
(VIF) and the Pearson correlation coefficient measure. 
VIF indicates the degree to which the standard errors 
are inflated due to the levels of multicollinearity in 
variables used in running a model. The VIF employs 
a regression analysis among predictors to detect mul-
ticollinearity (Kyalo et al. 2017). The R2 value from this 
multiple regression analysis is substituted in the VIF 
calculation formula as shown in Equation 1. 
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VIFi ¼
1

1 � R2
i

(1) 

Where i is the predictor
In this study, the “vifcor” function inherent in the 

“usdm” package available in R (Naimi and Araújo 
2016; R Core Team 2020) was used to eliminate corre-
lated variables. The “vifcor” randomly selects pairs of 
variables with high linear correlation, then eliminates 
the one with the highest VIF. The threshold was set at 
th = 0.7, representing a Pearson’s correlation coeffi-
cient (r ≥ 0.7) following the recommendation by Kyalo 
et al. (2018). A VIF value greater than 10 often sug-
gests a collinearity problem within a model (Dormann 
et al. 2013). The VIF values for the variables used in 
this study are shown in Table 1.

While the variables from the VIF calculation process 
showed low VIF values, the correlation matrix (Figure 
3) revealed further mild correlations (r < 0.7) among 
some of the variables. The variables correlation matrix 
of the 14 “VIF-selected” variables using the Pearson 
correlation coefficient is shown in Figure 3.

2.7. Species distribution models implementation

The “sdm” package (Naimi and Araújo 2016) per-
formed in R (R Core Team 2020) was used to simulate 

the SGH habitat suitability and ecological niche. The 
“sdmdata” function was used to generate 1000 
“pseudo-absence” points that were combined with 
the 125 “presence-only” used in this analysis. These 
125 occurrence points were sufficient since Stockwell 
and Peterson (2002) concluded that predicting the 
occurrence of a species at a location could be at 
90% of maximum prediction accuracy using 10 sam-
ple points and could be close to 100% using 50 data 
points. This suggests that our 125 “presence-only” 
sample points were sufficient at a national scale. 
Pseudo-absence points have been used by several 
other studies since obtaining real “presence-absence 
data” is logistically impractical (Phillips et al. 2009; 
Ozdemir et al. 2018). However, like other ecological 
niche models, “sdm” allows for the use of “presence- 
only” observations, by generating background 
“pseudo-absence” data (Naimi and Araújo 2016).

The package “sdm” merges different parallel 
executions of ecological niche models in a single pro-
gram using an object-oriented reproducible and 
extensible framework for ecological niche models in 
R (Naimi and Araújo 2016). Only 3 of the 15 were used 
in this study i.e. MaxEnt, RF, and SVM. MaxEnt calcu-
lates a conditional probability of occurrence using the 
density of the covariates at “presence” sites and the 

Figure 3. Collinearity matrix of the predictors used in this study. Lighter tones of the blue and red colors imply low variable collinearity, 
while dark shades show high collinearity. The inclination of the ellipse shows a positive or negative correlation.
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marginal density of the covariates in the rest of the 
study area (Elith et al. 2010). The RF uses a forest of 
random decision trees and prediction is done by 
selecting the class with the highest votes (Bangira 
et al. 2019), while SVM uses a hyperplane to estimate 
the divergence of class groupings for the prediction 
(Vapnik 1979). Comparatively, MaxEnt is widely used 
and reliably better in its predictive performance and 
usefulness as evidenced by over 1000 ecological 
applications published since 2006 (Merow, Smith, 
and Silander 2013; Booth 2018; Booth et al. 2014). 
Moreover, the aforementioned three machine learn-
ing algorithms are efficient in conducting complex 
species distribution experiments and provide rela-
tively higher modeling accuracies compared to the 
other methods like boosting (Abdel-Rahman, Ahmed, 
and Ismail 2013; Mosomtai et al. 2016; Mudereri et al. 
2020b; Sarvia, De Petris, and Borgogno-Mondino 
2020). A summary of these models’ execution syntax 
and their corresponding packages used by “sdm” in 
the parallel model simulations are provided in Table 2.

The future was predicted by only changing the 
selected climatic variables, but all the other variables 
were assumed to remain constant in the future. An 
ensemble projection approach was used to harmo-
nize the variations produced by the different model 
predictions. Ensemble modeling binds together the 
highest performance of all the models that have the 
most acceptable precision and accuracy (Naimi and 
Araújo 2016). In the current study, the “ensemble” 
function within the “sdm” package was used to gen-
erate the ensemble using the true skill statistic (TSS) 
weighted average approach (Naimi and Araújo 2016).

The predicted suitable area for the probability of 
SGH occurrence was calculated using threshold 
values i.e. ≥ 0.3 for the suitable area, while < 0.3 was 
regarded as unsuitable (Abdelaal et al. 2019). Using 
these values, a binary raster image of the suitable 

versus unsuitable classes for the whole study area 
was created. Using all the 182 PA boundary shapefile 
in R, the predicted binary values for each pixel were 
extracted. The total number of pixels for each pre-
dicted class was used to estimate the total coverage 
of the predicted suitable area against the unsuitable 
area within and outside of the PAs. For clarity, in this 
study, we only report on the eleven National parks in 
Zimbabwe as these are perceived to receive the max-
imum protection compared to the other PA cate-
gories. The final maps for displaying the SGH habitat 
suitability were developed using QGIS software ver-
sion 3.10.11 (https://www.qgis.org/en/site/)

2.8. Models’ accuracy validation

A 10-fold cross-validation approach was used for sub-
sampling the data using the inbuilt randomly split 
“independent test dataset” in the “sdm” package, 
universally to each of the three models. The 10-fold 
cross-validation approach was used because it vali-
dates the performance of models on multiple folds, 
which provides a more stable output of how the 
model performs. Furthermore, since every data point 
is tested exactly once and is used in the training set 
k-1 times, it reduces selection bias and flags overfit-
ting of the model. However, if identical samples are 
present in the dataset it may cause “twinning” since 
the point will feed identical information into the 
model. In this study, “twinning” was not experienced 
because only one sample was kept for each 1 km 
x 1 km grid (Phillips et al. 2009). The performance of 
the three models was then measured using the area 
under the curve (AUC) and TSS (Allouche, Tsoar, and 
Kadmon 2006) available in the “sdm” package. 
Generally, an AUC or TSS value of ≥ 0.7 demonstrates 
high model prediction performance (Tsoar et al. 
2007). The McNemar test (Mcnemar 1947) was further 
used to compare if there were significant differences 
among the predicted outputs by the three models.

3. Results

3.1. Models’ accuracy, comparison, and validation

The values of the calculated VIF of the predictor vari-
ables used in the three models are summarized in 
Table 1. The most independent variables as shown 
by the lowest values of VIF were related to terrain 

Table 2. R software packages used by “sdm” in the parallel 
execution of the three models; namely maximum entropy 
(MaxEnt), random forest (RF), and support vector machines 
(SVM).

Algorithm Syntax code 
in “sdm”

Package 
used

Reference

Maximum 
entropy

“maxent” dismo (Phillips, Anderson, and 
Schapire 2006)

Random forest “rf” randomForest (Liaw, Wiener, and 
Weiner 2002)

Support vector 
machines

“svm” Kernlab (Karatzoglou et al. 2004)
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variables i.e. aspect (1.14) and hillshade (1.15), while 
bioclimatic variables had slightly higher values of VIF 
such as Bio3 (2.32), Bio4 (2.33), Bio18 (5.62) and Bio15 
(8.41). These values suggested low collinearity among 
these variables hence were included in the model. On 
the other hand, the VIF values for other bioclimatic 
variables such as Bio11 and Bio8 were 31.62 and 
25.04, respectively, and thus were excluded from the 
final modeling analysis as they were considered not 
independent (Tables S1 and S2).

Using the receiver operating curve (ROC), results 
showed that all the models i.e. MaxEnt, RF, and SVM 

were consistent in their prediction (Figure 4). All the 
models displayed relatively high accuracy (AUC > 0.87 
and TSS > 0.65) in predicting SGH occurrence in 
Zimbabwe. RF had the highest values of AUC (0.95) 
and TSS (0.79) while the MaxEnt produced the lowest 
AUC (0.87) and TSS (0.65) scores (Figure 4). The results 
also show variations, where models such as the 
MaxEnt had a higher AUC but lower TSS, demonstrat-
ing variation in the specificity and sensitivity of the 
models.

Although the AUC and TSS metrics of the three 
models showed differences, the McNemar test showed 
that there were no significant differences (p < 0.001) in 
the predicted outputs by the three models, indicating 

that all the three models performed similarly in terms 
of accuracy (Table 3).

3.2. Variable importance using the current climate 
scenario
Of the 14 predictor variables, two (i.e. iso-thermality’ 
(Bio3) and “temperature seasonality” (Bio4)) were the 
top five most relevant variables across the three mod-
els. The “maximum temperature of the warmest 
month” (Bio5), “precipitation of warmest quarter” 
(Bio18), “length of the season” and elevation consis-
tently appeared in the top ten of the most important 
variables for all the three models. The respective vari-
able contributions of the 14 variables as they appear 
in the different models are summarized in Figure 5.

The bioclimatic and seasonality parameters domi-
nated the most relevant variables list while the topo-
graphic and LST had low relevance across the three 
algorithms tested. Topography variables appeared in 
all the models at different contribution levels; how-
ever, elevation appeared more frequently than the 
other terrain variables. LST appeared once among 
the ten most important variables for the SVM. RF, 
which had the highest accuracy (AUC = 0.95) amongst 
the other models, selected bioclimatic variables i.e. 
Bio5, Bio3, and Bio4 as the most relevant variables for 
predicting the occurrence probability of SGH in 
Zimbabwe (Figure 5).

3.3. The suitable habitat of SGH using the current 
and future climate scenario within National parks

The three machine learning models using the selected 
14 predictor variables demonstrated similar results for 
the prediction of SGH probability of occurrence (Figure 
6). All three models predicted the suitable habitat to be 
within similar spatial areas although differences in the 

Figure 4. ROC for the three models used to predict SGH occurrence in Zimbabwe viz. (a) random forest (RF), (b) support vector 
machines (SVM), and (c) maximum entropy (MaxEnt). The red and blue curves are the mean area under the curve (AUC) using the 
training and test data, respectively. The light blue curves show the 10-fold replicated model runs using the training data.

Table 3. McNemar test for comparing the performance of the 
three machine learning models in predicting the suitable habitat 
for the SGH. MaxEnt, RF, and SVM are maximum entropy, ran-
dom forest, and support vector machine models, respectively 
using the current climate scenario.

Models’ comparison Chi-square p-value
RF vs MaxEnt 30.02 < 0.001aa
RF vs SVM 10.32 < 0.001aa
SVM vs MaxEnt 9.25 0.001a

aSignificant at 95% confidence interval (CI); aa Significant at 99% CI

GISCIENCE & REMOTE SENSING 413



magnitudes of probabilities were observed among the 
modeled outputs. The highest prevalence and habitat 
suitability were predicted in northwestern-based 
National parks i.e. Hwange, Kazuma pan, Victoria Falls, 
and Zambezi and their surrounding areas. Furthermore, 
areas around the Kariba dam and along the Zambezi 
river were also established as key habitats for the SGH. All 
these areas occur in the marginal agro-ecological region 
“V” which is characterized by extensive farming regions 
suitable for extensive cattle ranching, forestry, wildlife 
management, and tourism. The lowest suitability was 
observed in some northern- and eastern-based 
National parks i.e. Chizarira, Chimanimani, and Nyanga.

The general trend from the predicted climate 
changes shows increased potentially suitable habitat 
for the SGH in most National parks (n = 7) with the 
largest area being observed under the RCP8.5. 
However, there were decreases in the suitable habitat 
in four of the northern- and eastern-based National 
parks due to the change in climate (Figure 7).

Although the percentage contributions in Figure 7 
show that Kazuma pan, Zambezi, and Mana pools 
were among the top suitable habitat contributors, 
they, however, have relatively low spatial coverage 

compared to Hwange and Gonarezhou (Table 4). 
Also, Table 4 shows that Hwange National park, 
which is the largest among the National parks in 
Zimbabwe contributes the most suitable habitat 
(946.2 km2 under current climate) of the SGH while 
Chimanimani (3.3 km2 under current climate) and 
Chizarira (3.6 km2 under current climate) contribute 
the least. Overall, there is a positive increase in the 
suitable habitat of between ~ 11% and 17% within 
the National parks’ category of PAs between the years 
2000 and 2050.

3.4 Suitable habitat for the SGH under current and 
future climate scenarios in different PA categories

Results show that the various “Wildlife Management 
Areas” across the country have the highest percen-
tage (> 90%) of the suitable habitat followed by 
recreational areas (± 60%) and National parks (50%). 
However, this does not relate to the spatial coverage 
across the different categories but within the bound-
ary of the specific category (intra-category). 
Conservancies and sanctuaries have the least or no 
area suitable for the SGH probably because of their 

Figure 5. Variable importance for predicting SGH occurrence in Zimbabwe using (a) random forest (RF), (b) support vector machines 
(SVM), and (c) maximum entropy (MaxEnt).
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location and not necessarily on their protection status 
or management effectiveness. Overall, an increase 
(~10%) in suitability across the different categories 
of PAs is projected under climate change (Figure 8).

Figure 9 shows the relative proportion of the sui-
table areas within and outside of the PAs using the 
current and future climate scenario i.e. RCP2.6 and 
RCP8.5 for the year 2050. Results show a decline in 
the proportion of the suitable area within PAs toward 
unprotected areas. In general, there is a decline from 
77% of the suitable area under the current climate to 
69% under RCP8.5 (2050). Conversely, there is a gain 
(8%) in suitability outside of the PAs network from 
23% to 31%. These results demonstrate that when the 
analysis is performed within the PAs network without 
considering the unprotected areas, PAs generally 

show gains in suitable habitat while when compared 
with the unprotected areas at the country level they 
show a slight decline (~8%) for both scenarios.

The results of the ensemble projection of the three 
models using the current (1970–2000) and future 
(2050) climate scenario combined the best predic-
tions of all the models and estimated the overall 
SGH habitat suitability to be mostly within PAs with 
few areas outside the PAs network (Figure 10). The 
spatial analysis shown in Figure 10 shows, interest-
ingly, that the three models concur that habitat suit-
ability of SGH is high along the eastern, northern, and 
western borders of the country with less suitability in 
the inner central areas of the country. Further, the 
western areas have large swaths suitable for SGH in 
Zimbabwe compared to other areas (Figure 10).

Figure 6. SGH habitat suitability under the current and future climate scenarios. The images in a, b, and c show the RF prediction under 
the current, RCP2.6 (2050) and RCP8.5 (2050) respectively while d, e, and f show the SVM prediction under the current, RCP2.6 (2050) 
and RCP8.5 (2050), respectively. The MaxEnt prediction under the current, RCP2.6 (2050) and RCP8.5 (2050) is shown by g, h, and 
i, respectively. The white polygons show the location and boundaries of the main National parks in Zimbabwe.
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4. Discussion

In this study, threemachine learning models were 
used to simulate the current SGH probability habi-
tat suitability in Zimbabwe. The quality of the pre-
dictor variables, response variables, model 
evaluation ideals were examined while building 
multiple models using the same input data was 
applied before the actual modeling procedure fol-
lowing the protocols suggested by Araújo et al. 
(2019). The three machine learning models were 
employed to test the hypothesis that PAs would 
be more effective at preserving and maintaining 
the SGH habitat than unprotected areas. By quan-
tifying the change in modeled habitat suitability 
over different climatic regimes, instead of the 

direct changes in species abundance, we examined 
whether suitable SGH habitat persisted within PAs 
than the unprotected areas (Lecina-Diaz et al. 
2019). The assumption was that the mechanism 
central to the effectiveness of PAs is the extent 
to which they protect and ensure the resilience of 
suitable habitat (McCune, Van Natto, and 
MacDougall 2017).

The three predictive models showed relatively high 
predictive power i.e. AUC and TSS values larger than 
0.8 and 0.65 respectively suggesting a plausible simu-
lation performance (Tsoar et al. 2007). Our results 
identified RF as the best predictive model, confirming 
the robustness of the RF model in predicting simula-
tion outcomes with multi-source covariates reported 
in other studies (Hallman and Robinson 2020; 

Figure 7. Overall and individual percentage cover of predicted suitable habitat for the SGH within the 11 National parks in Zimbabwe, 
using the current and future climate scenarios i.e. representative concentration pathway (RCP2.6) and RCP8.5 for the year 2050.

Table 4. The total area coverage (km2) and the predicted suitable habitat area (km2) of the SGH within the 
11 National parks in Zimbabwe, using the current and future climate scenarios i.e. representative concen-
tration pathway (RCP2.6) and RCP8.5 for the year 2050.

National Park Total area (km2) Current (km2) RCP2.6 (km2) RCP8.5 (km2)
Chimanimani 171.1 3.3 3.3 0.5
Chizarira 1910 3.6 0.0 0.2
Gonarezhou 5053 946.2 1201.2 1064.6
Hwange 14,651 5489.8 8148.5 9986.1
Kazuma Pan 313 284.6 301.2 290.5
Mana Pools 2196 1437.6 1540.0 1622.7
Matopos 424 13.2 29.3 24.7
Matusadona 1407 134.2 40.8 24.3
Nyanga 330 276.5 241.6 72.0
Victoria Falls 23.4 10.7 11.2 11.2
Zambezi 560 448.5 495.3 495.3
Overall 27,038.5 8714.0 11,681.3 13,336.2
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Kampichler et al. 2010; Mudereri et al. 2020b). 
Although they produce similar results, the three mod-
els show relatively different outputs, which was 
expected as they use different equations and 
approaches to perform the prediction hence the 
ensemble model (Naimi and Araújo 2016). 
Nonetheless, the bioclimatic conditions spatially 
demonstrated by the three models have been 
inferred as a proxy measure representing the general 
magnitude of change within the landscape occupied 
or potential habitat for SGH.

The finding that demonstrates the longer-term 
variables such as “iso-thermality” (Bio3) and “tempera-
ture seasonality” (Bio4) are more important compared 
to specific time window variables is explained by the 
fact that the breeding season for SGH can be as long 
as eight months with nests used for successive years 
(Msimanga 2004) and thus suitable conditions are 
required for a longer period. Also, Kemp and Begg 
(1996) suggested that nesting sites are more impor-
tant for SGH habitats than foraging influences and 
therefore the identified factors are more related to 

Figure 8. Overall and individual habitat suitability area percentage cover in 9 categories of protected areas in Zimbabwe, using the 
current and future climate scenario i.e. representative concentration pathway (RCP2.6) and RCP8.5 for the year 2050.

Figure 9. Relative proportion of suitable area within and outside PAs using the current and future climate scenarios i.e. representative 
concentration pathway (RCP2.6) and RCP8.5 for the year 2050.
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the distribution of the factors associated with nesting 
of the SGH.

Our prior assumptions and hypothesis were con-
firmed as our analysis demonstrated that the major 
portion of the suitable habitat for the SGH is currently 
within PAs and shall increase and remain within PAs 
under climate change. Several studies reiterate this 
huge reliance of the SGH on the PAs for its survival 
(Broms et al. 2014; Combrink et al. 2017; Kemp, Benn, 
and Begg 1998; Witteveen et al. 2013), however, none 
had established environmental tolerance of the SGH 
using future climate scenarios. The observed current 
and future dependence on the PAs by the SGH could 
be attributed to the vast availability of feed, reduced 
disturbance of their preferred savanna grasslands, 
and availability of forest areas for breeding 
(Witteveen et al. 2013). There is, however, a high 
probability of substantial continuing impact on the 
ecological stability within the present protected area 
network in Zimbabwe, with the majority of the PAs 
facing extensive ecosystem and species changes or 
spatial shifts and novel bioclimatic conditions by 2050 
(Zomer et al. 2015; Lecina-Diaz et al. 2019; Thamaga 
and Dube 2019). Thus, there is a great need to reg-
ularly monitor suitable habitat for the SGH particularly 

ensuring availability and maintenance of large trees 
necessary for nesting and breeding of the SGH.

Additionally, the dynamics of predicting specific 
vegetation cover types that influence habitat prefer-
ence indicators (e.g. presence of foraging and nest 
building resources) of the SGH are challenging when 
using purely bioclimatic or ecophysiological variables 
such as those used in this study (Hallman and Douglas 
Robinson 2020; McCune, Van Natto, and MacDougall 
2017). This is mainly because of other secondary fac-
tors introduced by climate-induced ecological pertur-
bance such as food availability, deforestation, bush 
encroachment, natural disasters and, the response 
and resilience of the protected area management 
system (Zomer et al. 2015; McCune, Van Natto, and 
MacDougall 2017). However, temperature and preci-
pitation tolerances, as evidenced in this study, define 
the potential range of most ecosystems and species 
particularly large carnivorous birds such as the SGH 
(Combrink et al. 2017). Moreover, in this study, the 
comprehensive seasonality parameters that capture 
the vegetation greenness using the EVI as a proxy for 
the vegetation type and density preferred by the SGH 
were used, thus vindicating the results of this study. 
However, further studies that establish the sufficiency 

Figure 10. Predicted SGH suitable habitat from ensemble projection and weighted average of true skill statistic (TSS) of the three 
models, viz. maximum entropy (MaxEnt) random forest (RF), and support vector machines (SVM) under (a) current, (b) RCP2.6, and (c) 
RCP8.5.
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and availability of nesting sites in Zimbabwe are 
necessary.

Although the bioclimatic conditions under the dif-
ferent climate scenarios tested in this study seem to 
favor the SGH as shown by the potential increase in 
habitat suitability, the ability to survive, adapt or ben-
efit from these changes is site-specific and depends 
on factors such as population dynamics, frequency of 
drought occurrences, availability of feed, habitat frag-
mentation, the permeability of the landscape matrix, 
and physiological adaptability (Eklund et al. 2016; 
Poor et al. 2019; Guerra, Rosa, and Pereira 2019). If 
the ecophysiological conditions within PAs proceed 
beyond those conducive for the SGH, or if invasive 
and competitive species are introduced, the conser-
vation effectiveness of these PAs will considerably 
decrease (Zomer et al. 2015). Therefore, although 
the habitat for the SGH will remain relatively stable, 
regular monitoring against the chances of invasive 
species, desertification, and loss of nesting sites is 
necessary and highly recommended within and out-
side of the PAs network.

This study established that the habitat would 
remain relatively suitable in the western-based areas 
compared to the eastern regions. This can be attrib-
uted to the differences in the altitude of these two 
regions (Bandopadhyay 2016). The eastern region is 
mainly characterized by high altitude mountains and 
hills while the western regions are low-lying 
(Mugandani et al. 2012). Studies have projected that 
high altitude regions are likely to warm at a faster rate 
than the lower elevation areas (Bandopadhyay 2016; 
Niang et al. 2014). This leads to the widening of the 
gap between the maximum and minimum tempera-
tures compared to low-lying areas hence higher prob-
abilities of the loss of suitable habitat for the SGH in 
the eastern regions.

This study also established that an increase in 
habitat suitability outside of the PAs network in 
Zimbabwe is likely with an 8% gain in suitability. 
These results concur with the study of Witteveen 
et al. (2013) who established successful nesting and 
breeding of the SGH in communal areas surrounding 
Matopos National park. The study identified positive 
human-SGH coexistence and availability of abundant 
feed under communal farming conditions as some of 
the major factors increasing habitat suitability outside 
PAs. Such hybrid conservation efforts may, therefore, 
become more important under projected climate 

conditions as habitats outside the traditional PAs 
will have increased suitability for SGH. However, it is 
not known whether the increase in the suitable habi-
tat outside the PAs network (from 23% to 31%) may 
eventually cause conflicts between conservation and 
agricultural objectives of local communities. To 
resolve these potential conflicts, we suggest 
improved cross-boundary collaboration and policy 
development among involved institutional structures, 
combined with stakeholder participation to imple-
ment a holistic conservation plan. This is even more 
necessary given that the suitable habitats for SGH are 
in national border areas with neighboring countries. 
Besides, the modeled effects of climate change on 
SGH suitability come in addition to other threats 
such as mercury (Daso et al. 2015) and lead (Koeppel 
and Kemp 2015) poisoning in the region.

Further, the analysis established that the different 
categories of PAs will have different levels of suitable 
habitat under climate change. Higher levels of protec-
tion resulted in higher levels of suitable habitat for the 
SGH. It is thus paramount to enhance their security as 
other studies have suggested that PAs are failing to 
maintain the exploitation of biological components 
within them (Lecina-Diaz et al. 2019). The “Wildlife 
Management Areas” category was identified as one 
of the key areas to house the SGH. However, most of 
these areas are privately owned and property owners 
would require awareness on strategies of maintaining 
the SGH habitat and safeguarding breeding sites 
within individual landholdings (McCune, Van Natto, 
and MacDougall 2017). It was however interesting to 
note that the network of PAs in the western and 
northwestern regions provided a continuous and 
interwoven potential habitat for the SGH. Hwange, 
Kazuma Pan, Victoria Falls, and Zambezi National 
parks were confirmed by this study as the hubs and 
fundamental reservoirs of potentially suitable habitat 
for the SGH. Thus, these should be monitored 
consistently.

4.1. Limitations of the study

Our study categorized all the 182 PAs (Figure 2) in one 
class and all the areas outside of these legally recog-
nized areas as unprotected. For all the PAs in 
Zimbabwe, the nature of activities and security varies 
for both inter- and intra-protection categories, as such 
influences the level of strictness, the animal species 
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diversity and abundance. For instance, some areas are 
more protected than the National parks regarding 
management and security e.g. Malilangwe, Save 
Valley, and Bubi. Therefore, our results may be used 
with caution as regards such privately owned PAs. 
However, as the management practices differ from 
one PA to the other, it remains a challenge to factor 
the individual quality of management of all the 182 
PAs in Zimbabwe within this study.

Moreover, there was no available information on 
specific tree species that SGH prefers for nesting, 
therefore vegetation phenological variables were 
used as indicators for nesting. On the other hand, 
the 10-fold cross-validation approach was used in 
this study instead of using an independent dataset 
to robustly validate the SGH habitat suitability mod-
els. One of the limitations of this validation approach 
is that it aggregates the validation scores across the 
10 folds, which might not give reliable information on 
the stability of the model performance if the data are 
not well distributed across the folds.

Conclusions

The results of the present study suggest that the current 
PAs network in Zimbabwe, particularly in the western 
and north-western regions provide a potentially suitable 
habitat to conserve SGH. Furthermore, the Kariba- 
Zambezi river region comprising of the Hwange, 
Kazuma Pan, Victoria Falls, and Zambezi National parks 
are strategic and key priority areas for the conservation 
of SGH. Although the lowest-ranked conservation areas 
are mostly found in the eastern region of the country, the 
habitats in these regions must be protected to ensure 
safe hubs for the SGH in the face of climate change. It 
would also be more prudent to educate and sensitize the 
private owners of the wildlife management areas on the 
importance of maintaining pristine habitat areas for the 
SGH. Also, maintaining a design of a large PA network 
such as observed around Hwange National park with 
a wide geographical, grassland, and forest extents are 
likely to provide a better buffer to the effects of range 
shifts in species and community distributions as a result 
of climate change. We, however, note that our dataset 
only covers a small portion of the SGH distribution in 
Africa. Therefore, our conclusions on the species habitat 
associations and potentially suitable habitat are limited 
to Zimbabwe. Further analyses should be conducted to 
determine if the relationships hold for the rest of its 

range e.g. in Botswana, Mozambique, South Africa, 
Zambia, Namibia, Tanzania, Democratic Republic of 
Congo, and Kenya.

Highlights

● We developed ecological suitability models for the 
Southern Ground-hornbill (SGH)

● Suitable habitat was matched with protected areas (PAs) 
coverage.

● PAs are extremely relevant for the SGH habitat preservation
● Western PAs will increase in suitable habitat while eastern- 

based will decrease
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