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Abstract

Antiretroviral therapy is currently the major intervention against HIV infection.However,

with increased access to treatment through the universal test and treat approach, poten-

tial barriers to the overall success of this strategy such as treatment dropouts and treat-

ment failure arise.We constructed a deterministic mathematical model of HIV/AIDS to

study the possible effects of treatment failure and treatment dropouts on the population

dynamics of the infection.The model incorporated a universal test and treat scenario and

a separate sub population of treatment dropouts.The disease free and endemic equilibria

is computed and the basic reproduction number R0 of the model, is determined using the

next generation matrix method.Numerical simulations are presented to investigate the ef-

fect of treatment failure and treatment dropouts on the dynamics of the model and on the

R0.From the expression of R0 it is shown that the treatment dropout class contributes to

the overall model reproduction number.Results of the numerical simulations show that an

increase in treatment dropouts leads to an increased transimission of the HIV infection in

a population.Also, the results indicate that even in the absence of treatment dropouts and

treatment failure the basic reproduction number remains above unit, highlighting the need

for several control measures to end the epidemic.Treatment failure is shown to increase

the maximum size of the AIDS class.The results from this study demonstrate the need to

focus on increasing efforts of reducing treatment dropouts in combination with other in-

tervention strategies, through monitoring adherence and identifying and enrolling back to

antiretroviral therapy(ART) of treatment dropouts.Also there is need to improve on early

diagnosis of treatment failure such that those on treatment do not progress to AIDS before

they are put on second or third line ART.
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Chapter 1

Introduction

1.1 General Introduction

1.1.1 Epidemiology of HIV/AIDS

HIV continues to be a major global public health issue, having claimed more than 35

million lives so far (WHO, 2018).At a global level, it is estimated that in 2016 alone,

there were about 1.8 million new HIV infections, a decline from 2.1 million new infec-

tions recorded in 2015(UNAIDS, 2017).Although HIV incidence appears to be declining

in general, in Sub-Saharan Africa the number of new infections remains high (Murray

et al., 2014).Evidence shows that most people living with HIV are in low and middle-

income countries (UNAIDS, 2017).Zimbabwe has one of the highest HIV prevalence in

sub-Saharan Africa at 13.3%, with 1.3 million people living with HIV in 2017 and around

41000 new infections are recorded every year (WHO, 2018).The adult HIV prevalence in

Zimbabwe has been on a decrease over the last ten years, from 16.5% in 2007 to 13.3% in

2017 as shown by the epidemic curve in Figure 1.1.

1.1.2 Universal test and treat (UTT) approach in HIV

Globally, 59% of adults and 52% of children living with HIV were receiving lifelong an-

tiretroviral therapy (ART) in 2017(WHO, 2018). ART is currently the major intervention

against HIV infection. In 2016 the WHO further expanded their HIV treatment guide-

lines from the eligibility criteria of ≤ 350 cells/µL CD4 count to targeted testing and

immediate enrolment into ART (WHO, 2016).This move was necessitated by findings

that not only does ART provide individual benefits such as increased life expectancy and

reduced morbidity it also provides public benefits of reduced infectivity of those on treat-

ment hence reducing incidence(Granich et al., 2009; UNAIDS, 2014). These expanded
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Figure 1.1: SOURCE:GAM ZIMBABWE COUNTRY REPORT 2017

guidelines that recommend treatment regardless of CD4 cell count, are referred to here

as universal test and treat(UTT).UTT approach is defined as an intervention strategy in

which the population at risk is screened for HIV infection and diagnosed HIV infected

individuals receive early treatment(Nah et al., 2017).In support of the Joint United Na-

tions Programme on HIV/AIDS (UNAIDS, 2014) 90-90-90 targets, Zimbabwe began to

adopt the expanded guidelines in 2016 and currently 84% of HIV+ adults are on ART and

73% of all people receiving antiretroviral therapy have durable viral suppression, thereby

reducing morbidity, mortality and onward HIV transmission (UNAIDS, 2018).

Since the introduction of UTT, empirical evidence indicate that UTT has led to reduc-

tions in nearly all epidemiological aspects of HIV/AIDS.For example a recent randomised

controlled trial (RCT) assessed the impact of UTT among people enrolling in HIV care

in the Kingdom of eSwatini, from 2014 to 2017(Khan et al., 2018).After six months in

HIV care, patients enrolling under UTT had higher levels of viral suppression than those

enrolling under the standard of care condition.In addition, two large-scale randomised

studies conducted to examine the impact of UTT in Botswana from 2013 to 2018 showed

that HIV incidence in the UTT communities was 30% lower than that of the control com-

munities and the viral suppression rate was higher in communities under UTT than in

the control communities(Makhema et al., 2019).However, though immediate ART reduces

virological failure as shown by the studies quoted above, there is evidence of it increasing

treatment dropout.Treatment dropout and poor adherence are risk factors of drug resis-

tance which leads to treatment failure, especially when those who would have dropped

out of treatment are re initiated (Matare et al., 2015; Kan et al., 2017).For example,

an observational cohort study found significantly higher ART attrition rate among HIV

patients with CD4 count > 500 cells/µL (Tang et al., 2017).Moreover, in a nationwide

cohort study of ART timing in China between 2011-2015 by Zhao and colleagues , sig-
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nificantly greater risk of treatment dropout was found among those who had a baseline

CD4 count > 350 cells/µL (Zhao et al., 2018).Such findings pose a potential barrier to

achieving the new WHO treatment guidelines and success of the UTT approach because,

allowing treatment of all HIV positive patients regardless of their cd4 counts means that

we have more people with higher cd4 counts being treated and as a result more treatment

dropouts are expected.

1.1.3 HIV treatment failure

ART treatment failure is defined as progression of disease and high risk of mortality

after beginning of ART(Aldous and Haubrich, 2009).It can be assessed by clinical failure,

immunologic failure or virological failure(Deeks et al., 2009).Factors that can contribute

to HIV treatment failure include drug resistance, drug toxicity, or poor adherence to

ART.Studies conducted in East Africa have revealed a higher prevalence of immunologic

failure ranging from 11 to 57% among patients on ART(Reynolds et al., 2009; Jaka et al.,

2009; Ahoua et al., 2009).In a study by Mutasa-Apollo and colleagues in Zimbabwe,

treatment failure rate which was based on a clinical/immunologic definition was 0.2% lower

than the average treatment failure rate of 2.64% reported for Africa(Mutasa-Apollo et al.,

2014).ART plays a critical role in the medical management of HIV infected individuals by

restoring the immune function and minimizes HIV related outcomes. However treatment

failure minimizes these advantages and leads to an increment of morbidity and mortality

with poor quality of life in HIV patients.Hence the current study seeks to determine the

effect of treatment failure and treatment dropouts on achieving HIV elimination in a

population, given an increased access to ART.

1.1.4 Treatment dropout

Although major gains have been made in combating HIV infection and its deplorable ef-

fects, significant challenges remain in the implementation of HIV treatment services.These

challenges include, among others, the issue of treatment dropouts.Those individuals who

either stop treatment or are lost from treatment programs are referred to as treatment

dropouts.The majority of these dropouts are due to loss to follow-up.Globally, attrition

rates from ART is around 20%(Renaud-Théry et al., 2010).However,studies from sub-

Saharan Africa have shown that the cumulative incidence of dropout after 3 years of

follow-up can be up to 35% with even higher rates seen among young people(Fox and

Rosen, 2010).In particular, among patients initiating ART, dropout from treatment is

as high as 30 to 50 % at 1 year in some programs(Koole et al., 2014).Similar studies

in Zimbabwe found rates of patient attrition at 6, 12, 24 and 36 months to be 9.3%,

21.9%, 31.2% and 35.6%, respectively (Mutasa-Apollo et al., 2014).Due to increased ac-
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cess to treatment as a result of the adoption of UTT approach, higher rates of loss to

follow-up are expected and this is an important threat to the success of HIV treatment

programs.Those patients that are lost to follow-up can interrupt their treatment, result-

ing in continued HIV transmission , disease progression and death.In addition those who

dropout may end up being re- initiated into treatment programs and may contribute to

drug resistance and subsequent treatment failure(Klein et al., 2014).

1.2 Background

HIV testing and subsequent treatment of infected individuals as soon as possible is cur-

rently the main intervention against HIV infection.In 2013 the UNAIDS set ambitious

target known as the 90-90-90 targets, premised on the need, by 2020, to have 90 per-

cent of all PLHIV know their HIV status, 90 percent of all PLHIV diagnosed with HIV

receive sustained ART, and 90 percent of all PLHIV receiving ART have viral suppres-

sion(UNAIDS, 2014).By the year 2030, UNAIDS is even aiming to achieve 95–95-95 at a

global level.Several studies have shown that early initiation and expanded ART of HIV

patients results in decreased morbidity,mortality and HIV transmission and substantial

herd immunity could be attained assuming that a high adherence level is maintained for

decades (Granich et al., 2009; Garnett and Baggaley, 2009; Montaner et al., 2014).In light

of these findings the WHO (2016) consolidated ART guidelines was birthed,which changed

the strategy of HIV treatment to include all HIV positive individuals regardless of their

cd4+ count, usually reffered to as the UTT approach.

In line with this strategy, Zimbabwe began to adopt the WHO recommendations in 2016

in order to increase ART access.As of 2018 90% of people living with HIV in Zimbabwe

knew their status and an estimated 88% of all people living with HIV where receiving

antiretroviral therapy(UNAIDS, 2018). However, evidence shows that if patients cannot

be retained in HIV care through long-term adherence to ART, such strategies may fall

short of expected gains(Stricker et al., 2014).Treating all means that we have a higher

proportion of ART patients who are less motivated to adhere or continue with treatment

especially those who start at higher cd4 counts because these patients consider themselves

or feel ’healthy’ and are usually asymptomatic(Charurat et al., 2010).Poor adherence to

ART is one of the stongest predictors of treatment failure.In addition those who dropout

of treatment may get re-initiated with advanced disease thereby increase likelihood of

treatment failure and death.

The initial modelling analysis of expanded ART which was done in South Africa in 2009

suggested that the transmission-prevention effects of ART, when implemented in the con-

text of UTT, could nearly eliminate HIV transmission in a generalised epidemic(Granich
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et al., 2009).However, findings from this ground breaking study where based on unreal-

istic and optimistic scenarios such as ART scale-up that reaches full coverage by 2016

and 100% annual uptake of voluntary HIV testing and high adherence levels .Afterwards

, several studies that examined UTT focused on the HIV transmission related outcomes

(e.g. prevalence and incidence), health and economic outcomes of the approach while few

studies in Southern Africa quantified the unintended consequences and real-world chal-

lenges of UTT, such as development of resistance (Granich et al., 2012; Kimmel et al.,

2018).Though various aspects of the UTT have been investigated such as frequency of

testing, test coverage and initiation of ART(Granich et al., 2009; Kretzschmar et al.,

2013),none have explicitly focused on the role of treatment failure and treatment dropout

in attempts to drive the infection towards elimination .In a study by Nah and coworkers,

they noted that retention in care to prevent treatment dropout and ensuring adherence to

achieve a successful viral load suppression, are some of the tasks to be ensured to attain

and maintain the population effects of UTT (Nah et al., 2017).Therefore, a mathematical

model analysis which incorporates the role of treatment dropouts and treatment failure

can give insights into the future outcomes of UTT, given these real- world challenges.

1.3 Statement of the problem

Increase in ART access through UTT approach is associated with an increase in treatment

failure and treatment dropout which in turn delay the achievement of a decline of new

HIV infections and achievement HIV elimination.While most studies on UTT have focused

on the health and economic outcomes of the approach, the possible negating effects of

treatment failure and treatment dropouts on the impact of UTT have not been extensively

studied.

1.4 Research question

How do the issues of treatment failure and treatment dropouts affect the overall effective-

ness of ART scale up programs?

1.5 Aim and Objectives

1.5.1 Aim of the study

The main aim of the study is to assess the impact of universal test and treat approach on

HIV/AIDS dynamics in a population, taking into consideration treatment dropout and

treatment failure.
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1.5.2 Specific objectives

The specific objectives of the study are to:

• Design a model for the transmission dynamics of HIV/AIDS that incorporates test

and treat approach, treatment failure and treatment drop-outs.

• Determine the basic reproduction number for this model analysis.

• Find the model equilibria and analyse their stability.

• Analyse the impact of treatment failure and dropouts on the basic reproduction

number and apply this in providing recommendations on HIV care.

1.6 Significance of the study

This study will provide a mathematical model that can be used to explain and predict

the effects of treatment failure and treatment dropouts on the dynamics of HIV infection

with expanded access to ART.Results of the contribution of these factors in the population

dynamics of HIV/AIDS can assist policy makers to apply and focus on new strategies to

improve management of treatment failure and treatment dropouts, leading to optimal

outcomes in HIV/AIDS management.

1.7 Dissertation structure

This dissertation consists of five chapters. Chapter 1 comprises the introduction of the

study.Chapter 2 highlights some mathematical tools that are used throughout the rest

of this dissertation.Chapter 3 provides a literature review in mathematical modelling

of HIV/AIDS and models of the UTT approach to HIV/AIDS management are exam-

ined.In Chapter 4 we construct an HIV/AIDS model with UTT, treatment failure and

treatment dropouts.Model analysis is done in Chapter 5 and this involves determination

of the disease free and endemic equilibrium points and their local stability. Also, the

next generation matrix will be used to compute the basic reproduction number for the

model.Numerical simulations are carried out to assess the effects of treatment failure and

treatment dropouts on the dynamics of the epidemic .The discussion and conclusion are

given in Chapter 6.
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Chapter 2

Mathematical Tools

This chapter presents some basic mathematical theories and methodologies that will be

used in this dissertation.Fundamental theorems of ordinary differential equations and

concepts such as Lyapunov function theorem,Hartman-Grobman theorem,Linearization

and the Next generation method are presented.In the final section of this chapter we

present some epidemiological concepts relevant to this study.

2.1 Mathematical Preliminaries

2.1.1 Ordinary differential equations

Material for this section is obtained from (Wiggins, 2003) and (Strogatz, 2018).

Differential equations are relations between a function and its derivatives. When the

function depends upon a single variable, the resulting differential equation is ordinary as

opposed to partial .Only the ordinary differential equations(ODE) will be considered in

this dissertation.In compartmental disease models, the independent variable is time t, the

rate of transfer between compartments are expressed mathematically by the derivatives

of the compartments with respect to time.

We consider the first order ordinary differential equation initial value problem of the form,

dx

dt
= f(x, t), x(0) = x0 (2.1)

where f(x) is bounded in a neighbourhood of the initial condition,t ∈ R is an independent

variable, x(t) is a dependent variable (unknown function) and f : Rn → Rn is a vector

field.Equation (3.1) is known as a nonautonomous ordinary differential equation.If f does

not depend explicitly on time, then (3.1) is called autonomous and takes the following

form,for x ∈ U ⊂ Rn

ẋ = f(x), x(0) = X ∈ Rn (2.2)
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The over dot in (3.2) represents the derivative with respect to time (dx
dt

).For fi : Rn → Rn

and xi ∈ Rn a system of ODEs is defined when n > 1 otherwise, for n = 1 the equation is

scalar and (3.2) is is referred to as a vector field on Rn.The system of ODEs to be analysed

in this thesis is autonomous and takes the form ẋ = f(x), with x ∈ R5
+ and f : R5

+ → R5
+.

Definition 1. (The initial value problem).A first order ODE, ẋ = f(x, t), together with

an initial condition x(t0) = x0 is called an initial value problem .The initial condition

x(t0) = x0 represents the position of the objects at some initial time t0. A solution of an

initial value problem is a differentiable function x(t) such that ẋ = f(t, x(t)) for all t in

an interval containing t0 where x(t) is defined and x(t0) = x0.

Definition 2. By a solution of (3.2), we mean a continuously differentiable function

x : I(X)→ Rn such that x(t) satisfies (3.2).Where x(0) = X ∈ Rn

Definition 3. (Well-posedness). System (3.1) is well-posed if solutions exist, are unique,

and for systems describing populations, remain bounded and nonnegative for all nonneg-

ative initial conditions.

Theorem 1. (Cauchy-Lipschitz). Consider the differential equation (3.2). with x ∈ Rn

and suppose that f ∈ C1.Then there exists a unique solution of (3.2) such that x(t0) = x0,

where t0 ∈ Rn,defined on the largest interval t0 ∈ I on which f ∈ C1.

Theorem 2. Let f and its partial derivatives ∂Fi/∂xj in (3.2) be continuous in Rn and

let x0 ∈ Rn and t0 ∈ Rn.Then there is an interval |t − t0| < h in which there exists a

unique solution x(t) = φ(t) of the system that also satisfies the initial conditions.

2.1.2 Equilibria and Stability of solutions for autonomous sys-

tems

Material from this section can be found in (Wiggins, 2003) and (Wairimu, 2012).

Definition 4. (Equilibrium point). A point x̄ ∈ Rn is an equilibrium point of the system

(3.2) if f(x̄, t) = 0 i.e., a solution which does not change with time.The term ”equilibrium

point” can be used interchangeably with the following: ”fixed point”, ”stationary point” or

”steady state”.

Let x̄(t) be any solution of (3.2). Then, x̄(t) is stable given solutions starting near x̄(t)

remain close to x̄(t) for all future times.Also, if nearby solutions converge to x̄(t) as

t→∞ then the fixed point is said to be asymptotically stable.
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Definition 5. (Stable and unstable equilibrium point). x̄(t) is said to be stable (or Lya-

punov stable) if, given ε > 0, there exists a σ = σ(ε) > 0 such that, for any other solution,

y(t), of (3.2) satisfying |x̄(t0)− y(t0)| < σ, then |x̄(t)− y(t)| < ε for t > t0, t0 ∈ Rn

Therefore, a solution which is not stable according to this definition is referred to as

unstable.

Definition 6. (Attractivity). The steady state x̄ is said to be attractive if there exists

a neighbourhood U ∈ Ω of x̄ such that for any initial condition x belonging to U, the

corresponding solution of (3.2) is defined for all t ≥ 0 and tends to x̄ as t→∞.

Definition 7. (Asymptotically stable equilibrium point). x̄(t) is asymptotically stable if

it is Lyapunov stable and for any other solution, y(t), of (3.2), there exists a constant

b > 0 such that, if |x̄(t0)− y(t0)| < b, then limt→∞ |x̄(t)− y(t)| = 0.In simpler terms x̄ is

said to be stable if solutions starting near it at a given time, remain near it for all later

times.If nearby solutions actually converge to x̄ at t → ∞ it is said to be asymptotically

stable meaning it is both Lyapunov stable and attractive.

Definition 8. (Global stability). We say an equilibrium point x̄ is globally stable if it is

stable for all initial conditions x0 ∈ Rn.

2.1.3 Linearization

We will be using information from (Wiggins, 2003).

The stability of x̄(t) is determined by first understanding the nature of solution near

x̄(t).Let

x = x̄(t) + y, y ∈ Rn. (2.3)

Substituting (3.3) into (3.2) and Taylor expanding about x̄ gives

ẋ = ˙̄x+ ẏ = f(x̄(t)) +Df(x̄(t))y +O(|y|2), (2.4)

where Df is the derivative of f and |.| denotes a norm on Rn.To obtain (3.4) f must be

at least twice differentiable.Using the fact that ˙̄x(t) = f(x̄(t)), (3.4) becomes

ẏ = Df(x̄(t))y +O(|y|2) (2.5)

Equation (3.5) describes the evolution of orbits near x̄.For stability we are concerned with

the behaviour of solutions arbitrarily close to x̄(t) ,so it seems reasonable to study the

associated linear system

ẏ = Df(x̄(t))y. (2.6)
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Therefore, the question of stability of x̄(t) involves two steps.Firstly, determine if the y = 0

solution of (3.6) is stable and then show that the stability(or instability) of the y = 0

solution of (3.6) implies stability (or instability) of x̄(t).However, if x̄(t) is an equilibrium

solution, i.e f(x̄) = 0, then Df(x̄) is a matrix with constant entries, and the solution of

(3.6) through the point y0 ∈ Rn at t = 0 can be written as

y(t) = eDf(x̄(t))y0 (2.7)

If all eigenvalues of Df(x̄) have negative real parts it means that y(t) is asymptotically

stable.

Theorem 3. Suppose all of the eigenvalues of Df(x̄) have negative real parts. Then the

equilibrium solution x = x̄ of the nonlinear vector field (3.2) is asymptotically stable.

Definition 9. (Hyperbolic Fixed Point). Let x = x̄ be a fixed point of ẋ = f(x),

x ∈ Rn. Then x̄ is called a hyperbolic fixed point if none of the eigenvalues of Df(x̄)

have zero real part.A hyperbolic fixed point is called a saddle if some, but not all, of the

eigenvalues have positive real parts. If all the eigenvalues have negative real part, then the

hyperbolic fixed point is stable and if all of the eigenvalues have positive real part, then it

is unstable.

Definition 10. A nonhyperbolic fixed point is a fixed point having the real part

of some of the eigenvalues associated to the linearized system equal to zero,that is, these

eigenvalues are purely imaginary.Such fixed point is said to be a center if the system is

linear.

Theorem 4. (Hartman and Grobman). Assume that x̄ ∈ Rn is a hyperbolic equilibrium

(all eigenvalues of the Jacobian matrix evaluated at x̄ have nonzero real part). Then,

in a small neighbourhood of x̄, the nonlinear system behaves in a similar manner as the

linearized system.

2.1.4 Routh-Hurwitz criteria

The Routh-Hurwitz criterion is necessary for establishing the local stability of solutions of

a dynamical system.This criterion provides a systematic way to show that the linearized

equations of motion of a sys- tem have only stable solutions by assessing the nature of

the roots of the characteristic polynomial of the matrix associated with the linearization

about the equilibrium point of interest. Consider a polynomial with real coefficients of

the form:

p(λ) = a0λ
n + a1λ

n−1 + ...+ an−1λ+ an, ai ∈ R, a0 6= 0. (2.8)

The Routh table associated with the polynomial (2.8) is given by:
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a0 a2 a4 a6 . . .

a1 a3 a5 a7 . . .

r3, 1 r3, 2 r3, 3 r3, 4 . . .

r4, 1 r4, 2 r4, 3 r4, 4 . . .

. . . .

. . . .

. . . . . . .

rn+1,1 rn+1,2 rn+1,3 rn+1,4 . . .

where,

(ri,1 ri,2...) ≡ (ri−2,2 ri−2,3...)−
ri−2,1

ri−1,1

(ri−1,2 ri−1,3...), i > 2.

Theorem 5. (Routh-Hurwitz Test) All of the roots of the polynomial (2.8) have real parts

strictly less than zero if and only if all n+1 elements in the first column of the Routh table

are nonzero and have the same sign.

Hence, it follows that the equilibrium point is locally stable if all the roots of the charac-

teristic polynomial are less than zero.

2.1.5 Next generation method

The next generation method is a linearisation method that is used to establish the lo-

cal asymptotic stability of the disease-free equilibrium (DFE)and the basic reproduction

number(R0).This technique was developed first by Diekmann et al. (1990) and later de-

veloped by Van den Driessche and Watmough (2002) for finite dimensional systems .The

method by van den Driessche and Watmough is going to be presented.In this methodR0 is

defined as the spectral radius of the Next Generation Operator. The determination of the

operation involves the distribution into two compartments, the compartment of infected

(latent, infectious, e.t.c ) and the compartment of uninfected individuals. Consider an

epidemiological model with no classes or with homogeneous compartments. The vector

x represents the state of the system and xj is the number of individuals in compartment

j.For clarity the compartments are sorted such that the first k compartments correspond

to infected individuals while the others are the infected compartments.

Set the vector x = xj, j = 1, ..., n where xj is the number of individuals in compart-

ment j.

Let Fj(x) be the rate of appearance of new infections in compartment i ,V+
i (x) be the

rate of transfer of individuals into compartment i by all other means, and V−j (x), the rate

of transfer of individuals out
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of compartment j.It is assumed that each function is continuously differentiable at least

twice in each variable.The dynamics of the compartment is defined by

ẋj = Fj(x) + V +
j (x)− V −j (x)

If we put Vj(x) = V +
j (x)− V −j (x) the previous system becomes

ẋj = Fj(x) + Vj(x). (2.9)

At the DFE, x0 , the infected compartments are empty ie j > k, (x0)j = 0.Since each

function represents a directed transfer of individuals, they are all non-negative.Thus we

have the following hypothesis:

1. x ≥ 0, then Fi,V+
i ,V−i ≥ 0 for i = 1, . . . , n.For biological reasons all the

functions are non-negative.If a compartment is empty, then there can be no transfer

of individuals out of the compartment by death, infection, nor any other means.

Thus,

2. If xi = 0 then V−j (x) = 0. In particular, we if set Xs = {x ≥ 0;xj = 0, i = 1, ..., n}
and if x ∈ Xs, then V−j (x) = 0.In other words, there can be no transfer from an

empty compartment.

3. Fi = 0 if i > k.The condition arises from the simple fact that the incidence of

infection for uninfected compartments is zero.That is, there is no immigration of

infectives from the uninfected compartment.

4. If x0 is the disease free state then Fj(x0) = 0 and for j ≥ k, V+
j (x0) = 0.This

ensures that the disease free subspace is invariant, if the population is free of disease

then introduction of a few infected individual will not result in an epidemic ,the

population will remain free of disease.

The remaining condition is based on the derivatives of f near a DFE. For our

purposes, we define a DFE of (3.8) to be a (locally asymptotically) stable equilibrium

solution of the disease free model, i.e., (3.8) restricted to Xs. Note that we need

not assume that the model has a unique DFE. Consider a population near the DFE

x0. If the population remains near the DFE then the population will return to the

DFE according to the linearized system

ẋ = Df(x0)(x− x0), (2.10)

where Df(x0) is the Jacobian matrix of f evaluated at the DFE, x0.

5. If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts.
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The conditions listed above allow us to partition the matrix Df(x0) as shown by the

following lemma.

Lemma 1. If x0 is a DFE of (3.8) and fi(x) satisfies all the conditions(1-5), then the

derivatives DF(x0) and DV(x0) are partitioned as

DF(x0) =

(
F 0

0 0

)
, DV(x0) =

(
V 0

J3 J4

)
,

where F and V are the k ×m matrices defined by :

F =

[
∂Fi
∂xj

(x0)

]
and V =

[
∂Vi
∂xj

(x0)

]
with 1 ≤ i, j ≤ k.

Further, F is non-negative, V is non-singular and J3 and J4 are matrices of the transition

terms and all eigenvalues of J4 have positive real parts.The matrix FV −1 is called the

Second Generation Matrix.

Definition 11. (Basic Reproduction Number, R0 ). The basic reproduction number, R0

is the spectral radius of the second generation matrix, namely

R0 = ρ(−FV −1)

Theorem 6. Consider the disease transmission model given by (3.8) with f(x) satisfying

conditions (1–5). If x0 is a DFE of the model, then x0 is locally asymptotically stable if

R0 < 1, but unstable if R0 > 1.

2.2 Epidemiological preliminaries

2.2.1 Definition of some basic terms

The following definitions are common in the epidemiology literature. References used here

are (Mishra et al., 2011) and (Takeuchi et al., 2007).

• Epidemiology is the study of the distribution and determinants of health related

states or events in specified populations and the application of this study to the

control of health problems.

• Susceptible:Group of individuals in a given population who are not infectious by

the disease under consideration but can become infected as a result of their inter-

actions with infected individuals or by having contacts with infected objects. Their

susceptibility is dependent on the disease under consideration; entering into the sus-

ceptible compartment can occur at birth, onset of sexual maturity (e.g., for sexual

transmitted diseases), or loss of protective immunity.
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• Exposed (Latently infected):Group of individuals who have been infected with the

disease, but have not started transmitting the disease due to incubation. Incubation

is the time from the time of exposure to an infectious disease until on set of the

disease symptoms.

• Infectious : Group of individuals who are infected with the disease and are capable of

transmitting the infection to uninfected individuals. Transmission could be directly

to other individuals or through other means such as vectors or the environment.

• Recovered /removed :Group of individuals who are no longer susceptible to the infec-

tion at that time. Recovered individuals are individuals who were once infected with

the infection and have developed immunity against it. The recovery can be tempo-

rary, that is, individuals can be reinfected, or permanent (no reinfection). Removed

individuals do not affect the transmission dynamics of the infection. The removal

could be through isolation from the rest of the population, through immunization

against the infection, through recovery from the disease with full immunity against

reinfection or through death caused by the disease.

• Vertical transmission:Process in which an infected mother transfers the infection to

her child during delivery or through breast feeding.

• Horizontal transmission:Transmission of infection through body contact or through

contact with infected equipment or materials.

• Force of infection:The transmission dynamics of an infection depends on the per

capita incidence rate of the infection λ(t)in relation to susceptible individuals,λ(t)

forms the basis for the transmission dynamics in the model. The force of infection

accounts for the transmission process between infectious and susceptible individuals

and depends on the prevalence of infection in the population, I(t)/N(t), where I(t)

is the number of the infectious individuals at time t and N(t) is the total population

at time t . Assuming homogeneous mixing assumption λ(t) = βcI(t) / N(t) where

c represents the contact rate and β is the transmission probability per contact.

Transmission between the infected and the susceptible depends on how the contact

structure is expected to change with the total population.

The transmission dynamics could follow any of the two ways:

1. Density-dependent (standard incidence) transmissionIn this case, contacts are

assumed to be proportional to the total population density ie: c = cN ≈ N

and λ(t) = βI(t). The number of newly infected individuals is obtained from

λ(t)S(t), which depends on the number of infectious individuals and susceptible

individuals in the population, if random mixing is assumed.
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2. Frequency-dependent (mass action) transmission:This is the case in which the

number of contacts is assumed to be independent of the total population.The

type of contacts required for the transmission depends on the mode of trans-

mission of the infection (e.g, physical contact for directly transmitted infection

such as influenza, chickenpox, or physical contact for sexually transmitted in-

fection such as gonorrhoea and HIV).

• Incidence is the number of new cases of illness (infection) occurring in a population

during a given time period.

• Prevalence is the number or proportion of cases of illness present in a given popu-

lation at a specific point in time.

• Endemic :refers to the constant presence of a disease or infectious agent within a

given geographic area or population group; may also refer to the usual prevalence

of a given disease within such area or group.

• Epidemic:the occurrence of more cases of disease, in a given area or among a specific

group of people over a particular period of time, than what is expected.

• Pandemic:An epidemic occurring over a very wide area and usually affecting a large

proportion of the population such as several countries or continents.

• Disease free equilibrium is the state where the population is completely free from

infection; the implication is that all infected compartments are zero and the total

population comprises only susceptible or immune individuals.

• Endemic equilibriumis the state where the infection remains in the population, so

there is a positive number of infectious individuals at equilibrium.

2.2.2 The basic reproduction number

The basic reproduction number, denoted by R0, is the expected number of secondary

cases produced, in a completely susceptible population, by one infective individual dur-

ing his/her entire period of infectiousness(Diekmann et al., 1990).Mathematical epidemic

models, exhibit a threshold behaviour.If R0 < 1, then an infected individual produces on

average less than one new infected individual during the course of their infectiousness, and

the infection cannot grow.Conversely, if R0 > 1, then each infected individual produces

more than one new infected individual, and the disease can spread in the population.For

the case of a single infected compartment, R0 is simply the product of the infection rate

and the mean duration of the infection. However, for more complicated models with sev-

eral infected compartments this simple definition of R0 is insufficient(Van den Driessche

and Watmough, 2002).
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The disease outbreak could progress rapidly enough such that demographic effects in the

population could be ignored but the disease will still die out if R0 is less than one, and

if it exceeds unity, there will be an epidemic. In either case, the disease will die out if

R0 is less than one, and if it exceeds unity, there will be an epidemic.Mathematically, if

R0 < 0, the disease-free equilibrium is approached by solutions of the model describing

the situation and if R0 > 0, the disease-free equilibrium is unstable and solutions move

away from it. Furthermore, there is an endemic equilibrium with a positive number of

infective individuals. In this case, the disease remains endemic in the population however,

with more than one stable equilibrium when R0 is less than one, the situation may be

different(Hethcote, 2000).
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Chapter 3

Literature review

3.1 Review on universal test and treat approach

The Joint United Nations Program on HIV and AIDS (UNAIDS) set the 90-90-90 targets

in 2013 with the goal of ending AIDS by the year 2030 (UNAIDS, 2014).These goals states

that by the year 2020, 90% of all HIV-positive persons will know their HIV status, 90%

of those with a diagnosis of HIV infection will receive sustained ART, and 90% of persons

receiving ART will have attained viral suppression.In addition, the WHO reviewed ART

guidelines in 2015 to allow an expanded access to ART such that all those who test HIV

positive are immediately initiated on treatment regardless of their cd4 count otherwise re-

ferred to as the universal test and treat approach (UTT)(WHO, 2015).Since the inception

of these new ART guidelines several intervention studies have demonstrated an increased

level of viral suppression and reduced incidence of HIV infections in communities under

UTT approach.In a community-randomized trial in 30 rural and peri urban communi-

ties in Botswana from 2013 to 2018 , those who where under UTT had a significantly

higher viral load suppression compared to those receiving standard of care (Makhema

et al., 2019).Also, a 30% reduction in HIV incidence was observed in the communities

under UTT approach compared to those who where not.Similar findings where recorded

by Khan et al. (2018) in a randomised controlled trial (RCT) which assessed the impact

of UTT in 14 real-world service delivery sites, among people enrolling in HIV care in the

Kingdom of eSwatini, from 2014 to 2017.Six months after enrolling in HIV care, patients

enrolling under UTT approach were seven times more likely to be retained in care with

viral suppression than those enrolling under the standard of care condition.

However, in some studies UTT did not result in a significantly lower incidence of HIV in-

fection than standard care.A cluster randomised trial of 22 communities in rural KwaZulu-

Natal, South Africa reported the absence of a lowering of HIV incidence in UTT clusters

which was attributed to poor linkage to care although follow-up was too short to evaluate

the role of ART adherence and retention on treatment on these findings (Iwuji et al.,
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2018).In a randomised trial by Havlir et al. (2019) in rural communities in Uganda and

Kenya there was no significant difference in the incidence of HIV infection between the

groups though the percentage of HIV-infected persons with viral suppression for the UTT

groups was 15% higher than the control groups.Among other possible explanations for the

absence of a difference in HIV incidence Havlir and coworkers highlighted the presence of

infection sources from a small subgroup of persons who had unsuppressed viral load.These

subgroups may include those who are experiencing treatment failure , those that are not

adhering to treatment and those that have completely stopped taking their medication.

Those individuals who drop out of ART are referred to here as treatment dropouts.ART

dropouts are a serious challenge to the success of HIV/AIDS treatment with drop out rates

as high as 30–50 % at 1 year in Sub-Saharan Africa(Koole et al., 2014; Fox and Rosen,

2010).Reasons and predictors of treatment dropout vary with set-up but may include but

not limited to being young,adverse drug side effects,baseline CD4 counts,distance from

health center ,mental health problems , death and loss to follow-up. However, the majority

of treatment dropouts are due to loss to follow-up (Fox and Rosen, 2010).Those lost to

follow up can stop their treatment leading to further disease progression and continued

HIV transmission hence negating the population benefits of UTT.In addition treatment

dropout of patients receiving ART is one of the reason for treatment failure due to poor

adherence and drug resistance(Taiwo, 2009).As a result treatment dropout indirectly leads

to treatment failure.

With expanded access to ART the problem of treatment dropouts is expected to occur

at a larger scale since we now have more people starting ART at higher cd4 counts and

will be on HIV treatment for longer hence increased potential for intermittent adher-

ence.Consequently those who start ART at higher cd4 place themselves at higher risk for

the emergence of ART resistance and treatment failure because they do not have clinical

symptoms of AIDS and may take ART intermittently because they feel healthy and are

less motivated to adher.In an observational study on effects of high CD4 cell counts on

attrition among HIV patients receiving antiretroviral treatment by Tang et al. (2017),

those with cd4 counts greater than 500 cells/mm3 had a significantly higher ART attri-

tion rate compared to those with cd4 counts less than 350 cells/mm3.Similar findings of

suboptimal adherence at higher baseline cd4 counts at initiation of ART where reported

by Pasternak et al. (2015).However, a retrospective cohort study on retention on ART

during UTT implementation in a Malawian district showed mildly increased retention on

ART in general though certain groups remained at higher risk of attrition before and

during UTT(Alhaj et al., 2019).Despite several studies having shown reduced morbidity

and mortality with UTT approach, there is limited understanding of the possible negat-

ing effects of treatment failure and treatment dropouts on the overall success of ART

programs over long durations especially in the era of UTT approach.
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3.2 Mathematical modelling of epidemics

Mathematical modelling involves the use of mathematical tools to project how infec-

tious diseases progress in populations and to show the likely outcome of an epidemic

and help inform public health interventions.A better understanding of the transmission

characteristics of infectious diseases in communities, regions, and countries can lead to

better approaches in the management of these diseases. Mathematical models can ei-

ther be deterministic or stochastic .Examples of deterministic models are compartmental

mathematical models which use ordinary differential equations to describe the transition

rates from one compartment to another and each compartment represents a specific stage

of the epidemic.Stochastic models possess some inherent randomness that describes the

transmission of infection between two individuals hence,closely resembles the real natural

world situation.This dissertation will only consider a deterministic model .Mathematical

modelling begun with Daniel Bernoulli in 1766 when he modelled the effects of smallpox

variolation on life expectancy after which he was able to show that variolation would

increase life expectancy .Ronald Ross also investigated intervention strategies for malaria

for their effectiveness using mathematical models (Ross, 1910).Of much importance to this

dissertation is the work by Kermack and McKendrick who were the first to describe the

dynamics of disease transmission in terms of a system of differential equations (Kermack,

1927).We are going to use this model as a basis for our research.

The Kermack–McKendrick epidemic model splits the population into three nonintersect-

ing classes, when a disease spreads in a population.The classes are named S,I and R.The

class of individuals who are healthy but can contract the disease is denoted S and are

called susceptible individuals or susceptibles.Those who have contracted the disease and

are now sick with it make the class of infected individuals denoted by I .In this model, it

is assumed that infected individuals are also infectious.The class of individuals who have

recovered and cannot contract the disease again are called removed/recovered individuals

denoted by R.In this model it is assumed that if someone is recovered, this person has

become immune to that infection. The transmission model diagram is shown in Figure

3.1.

S I R
β γ

Figure 3.1: Flowchart of the Kermack–McKendrick SIR epidemic model

The number of individuals in each compartment changes with time hence, S(t), I(t) and

R(t) are functions of time, t. The total population size N is the sum of the sizes of these

three classes:

N = S(t) + I(t) +R(t).
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This model gives rise to the following system of differential equations:

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

Here γ ≥ 0 , is the recovery rate and β ≥ 0 is the rate at which susceptibles get in-

fected.The constant β in the first equation stands for b/N , where b is the number of

susceptibles that each infected person transmits the pathogen to in a (small) time in-

terval.The term βI is referred to as the force of infection.Many variations on this basic

SIR model have been considered such as: i) the SI model which is used to describe the

dynamics of a contagious and incurable disease such as HIV where there is no recovery

from infection ii) models that incoperate temporary immunity (SIRS) or no immunity

(SIS) iii)the(SEIR)model is another variattion in which an infected individual has a

latent period before becoming infectious iv) SIR models with vertical ttransmission and

with stratified populations (Allen et al., 2008).

3.3 Review of some mathematical models of HIV/AIDS

Mathematical models have been used to describe the dynamics of HIV/AIDS epidemic and

identify possible prevention strategies and some have revealed real impact of mathematical

modelling on the war against the infection.From the initial model of Anderson et al. (1986)

several modifications of the modelling structure have been presented.In particular, May

and Anderson (1988) presented a simple HIV transmission model to help clarify the effects

of various factors on the overall pattern of the HIV/AIDS epidemic.Also, Hyman et al.

(1999) used two simple models to study the impact of variations in infectiousness in HIV

infected individuals.They then derived and compared threshold conditions for the two

models and explicit formulas of their endemic equilibria.

In 2001, Greenhalgh and colleagues examined the impact of condom use on the sexual

transmission of HIV/AIDS amongst a homogeneously mixing male homosexual popula-

tion(Greenhalgh et al., 2001).They derived a multigroup SIR model of HIV/AIDS trans-

mission where the population of homosexuals is split into classes according to frequency

of condom use.Analysis of this model showed that if R0 is greater than unity then there is

a unique DFE which is locally unstable and a unique endemic equilibrium. However,the

model exhibited unusual behaviour in that when R0 is less than unity two endemic equi-

librium solutions can also co-exist simultaneously with the disease free solution which is

locally stable.This unusual behaviour meant that reducing R0 to less than unity no longer
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guarantees eradication of the disease, which findings could have important implications

for control of the disease.

Mukandavire and Garira (2007) formulated a sex-structured model of HIV/AIDS aiming

to investigate the effects of educational campaigns and the role of sex workers on the

spread of HIV/AIDS among heterosexuals.In their model the population is divided into

three subgroups: susceptibles, infectives and AIDS cases. The subgroups are further

divided into two classes, consisting of individuals involved in high-risk sexual activities

and individuals involved in low-risk sexual activities.It is assumed in this model that

public health educational campaigns lead to movement of individuals from high to low

sexual activity groups.They concluded that the presence of sex workers enlarges R0 ,

thus fuels the epidemic among the heterosexuals. In addition they showed that public

health educational campaigns among the high-risk heterosexual population reduces R0

and hence can slow or eradicate the spread of the disease.

A highly simplified deterministic model that incorporates the joint dynamics of Tuber-

culosis(TB) and HIV was formulated and analysed by(Roeger et al., 2009).The basic

reproduction numbers of each of the diseases R1 (TB), R2 (HIV) and both diseases R =

max( R1; R2) were found and the model was qualitatively analysed.From their analytical

results they found the disease free equilibrium for the full model to be locally asymptoti-

cally stable when R < 1 and the disease free equilibrium point for TB-only model to be

locally asymptotically stable when R1 > 1 and R2 < 1.They also showed that if R1 < 1

andR2 < 1 it does not guarantee a stable HIV-only equilibrium and there is possibility of

TB coexisting with HIV when R2 > 1.Numerical simulation showed increase in the rate

at which TB progresses from latent to active form in individuals that are co-infected with

both HIV and TB therefore contributed greatly to the rise in prevalence of TB.Their re-

sults suggested that investing more in reducing the prevalence of HIV could be an effective

way to reduce the impact of TB.

Nyabadza and Mukandavire (2011) proposed a deterministic HIV/AIDS model that in-

corporates condom use , screening through HIV counselling and testing (HCT), regular

testing and treatment as intervention strategies.They aimed to assess the effectiveness of

HCT on the incidence and predicting the long-term dynamics of the epidemic.The model

was analyzed and fitted to the South African prevalence data.They showed that the clas-

sical requirement for the basic reproduction number to be below unity, though necessary,

is not sufficient for disease control in this case due to the presence of bifurcation.They

concluded that the future of the epidemic largely depends on changes in behaviour.Similar

results where obtained in a study by Bhunu et al. (2011) in which they mathematically

analysed a deterministic HIV/AIDS model to assess the impact of educational programs

and abstinence in Sub-Saharan Africa.Bhunu et al showed that effective counselling and
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testing have a great potential to partially control the epidemic (especially when HIV pos-

itive individuals either willingly withdraw from risky sexual activities or disclose their

status beforehand) even in the absence ART.

3.4 A model for HIV/AIDS with screening and treat-

ment in a population

In this section we will review an article by (Safiel et al., 2012) , on modelling the effect

of screening and treatment on transmission of HIV/AIDS infection in a population.Our

model is a direct modification of this model.Safiel and colleagues proposed a non linear

mathematical model that subdivides the population of interest into five sub population

compartments depending on the HIV status of individuals.The five subclasses are the

susceptibles , unaware infectives, screened infectives , treated class and full blown AIDS

class .According to their model the susceptibles are HIV negative individuals ; the unaware

infectives are individuals that have contracted the infection but have not been tested ;

the screened infectives are HIV positive individuals who have a confirmatory test of their

status, treated class are those individuals who have been enrolled on ART and are taking

their life long medication .Some of their assumptions in formulating this model include

but not limited to i) Unaware infectives, screened infectives and treated class will move to

full blown AIDS at different rates.ii) Unaware infectives, screened infectives and treated

class can infect susceptibles class at different rates.

The authors analysed qualitatively the model system .The effective reproduction number

Re of the normalised model system was obtained using the next generation operator

method and the formula for it was presented in the paper.The model showed that the DFE

is locally stable by using Routh Hurwitz criteria when Re < 1 and unstable when Re > 1

but, globally the DFE is not stable due existence of forward bifurcation at threshold

parameter equal to unity.In addition, the model analysis showed the existence of unique

endemic equilibrium that is locally stable under certain conditions when Re > 1.They

also used the Lyapunov method to show that the endemic equilibrium is globally stable

under certain conditions.The normalized forward sensitivity index method was used to

determine the sensitivity of Re to the parameters in the model.Numerical simulations of

the model showed that the screening of unaware HIV infectives and treatment of screened

HIV infectives have the effect of reducing the spread of the infection.Furthermore, they

observed that when the screened infectives and treated infectives do not participate in the

transmission of the infection, the AIDS population is significantly reduced in comparison

to the case where there is no screening and treatment.

The model by Safiel et al. (2012) did not consider the current approach of universal test
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and treat where everyone who tests HIV positive is immediately initiated on ART and

is assumed to be on treatment.In their model some of those who test positive for HIV

can even progress to full blown AIDS before they receive treatment.Also, the model only

captures treatment failure with no inclusion of a subgroup of treatment dropouts.

3.5 Review of some models of UTT approach in HIV/AIDS

Research advances on antiretroviral drugs for HIV/AIDS has led a number of researchers

to develop and analyze mathematical models to study the impact of HIV treatment at

population level.In this section we review some of the studies which mathematically mod-

elled the impact of UTT under different settings .

The very first test-and-treat model was developed by Granich and his colleagues (Granich

et al., 2009).In this study they proposed a staged progression compartmental transmission

model for HIV infection and antiretroviral therapy(ART) provision.A test case community

was employed in which everyone was tested for HIV every year and starting people on

ART immediately after they are diagnosed HIV positive. A stochastic model was used

to explore the effect of various treatment strategies and model parameters on R0 and

a deterministic transmission model was used to explore the effect of various HIV testing

and treatment strategies on the long term dynamics of the epidemic.The stochastic model

showed that testing all adolescents and adults at least 15 years old once a year, on average,

and starting individuals on ART as soon as they test positive for HIV would reduce R0

below unity and eventually eliminate HIV.Also it was seen that scaling up of universal

voluntary HIV testing with immediate initiation of ART could stop transmission and

eliminate HIV in a high prevalence setting.

Thereafter, Dodd et al. (2010) investigated the test and treat intervention in HIV/AIDS

under a range of contexts, and using a different mathematical model.Unlike the Granich

model ,their model incorporated updated information such as variation in sexual risk

behaviour , changes in HIV transmissibility over the course of infection and observed HIV

survival rates from an African setting.The modelling approach broadly confirmed initial

findings by Granich and coworkers.However, the model analysis highlighted important

aspects of UTT that need to be considered such as the crucial dependence of the approach

on the epidemiological context (under some circumstances, the effect was as large as

estimated by Granich et al., but in others, the effect was much less).Also,from numerical

simulations they found that failing to achieve sufficiently high coverage levels or failing

to test frequently enough, was associated with a dramatic spiralling of treatment costs

and from their model, the most cost-efficient strategy could be testing everyone 3-5 years

instead of every year.
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Another UTT model constructed by Kretzschmar et al. (2013) was a direct extention of the

model by Granich et al. (2009).It allowed for an arbitrary number of stages of infection and

variable infectivity was taken into account.The model also described progression through

n stages of infection, background mortality, additional mortality from HIV infection,

and the uptake and dropping out of treatment.The basic reproduction number of the

model was analysed using the next generation method . After incorporating these more

realistic assumptions the authors found that elimination of HIV by UTT is only feasible

for populations with very low reproduction numbers or if the reproduction number is

lowered significantly as a result of additional interventions.In particular for South Africa

they predicted that, if the basic reproduction number is 2.62, elimination will be very hard

to achieve taking into account the high annual treatment uptake of at least 80% and low

treatment dropout rate needed, which correspond to a coverage of more than 90%.Though

some aspects of treatment dropout where considered in this model, there still remain a

question on how the inclusion of treatment failure and reinitiation of dropouts affects the

overall dynamics of the disease.

Mathematical models have also been used to investigate the effect of expanding ART on

HIV/AIDS epidemic for men who have sex with men (MSM) .In particular, Sood et al.

(2013) formulated a compartmental HIV model for MSM in Los Angeles County.The

model focused on UTT in MSM and incoperated multiple drug resistance(MDR) in order

to explicitly address potential effects of UTT policies on the spread of MDR.A 1-way

sensitivity analysis was conducted to determine how the model results were impacted by

each parameter individually.The results from this model showed that the UTT policy can

generate substantial reductions in new infections, death, and new AIDS cases.However,

this model showed that HIV elimination is not possible from even the most aggressive

UTT policy because benefits of test and treat are counterbalanced by large MDR in-

creases.Similar findings where reported by Blower and Volberding (2002), in a modelling

study on the impact of expanding ART coverage in the presence of transmitted and ac-

quired drug resistance and showed that expanding ART coverage can substantially reduce

the overall incidence of HIV while simultaneously increasing the incidence of drug-resistant

strains. Sensetivity analysis by Sood et al. (2013) reviewed that new infections are most

sensitive to the parameters that represent sexual behavior (ie, the transmissibility param-

eters and number of partners) and for MDR, results where most sensitive to the rate of

resistance parameter.Similar findings of modest UTT policy benefits where reported by

(Charlebois et al., 2011; Sorensen et al., 2012) , in mathematical models of comprehensive

test-and-treat services and HIV incidence among MSM in the United States.

Nah et al. (2017) proposed a simple mathematical model to understand how UTT influ-

ences the population dynamics of HIV/AIDS .Their model divides the population into

susceptible individuals, infected individuals without AIDS (H) and those who have been
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diagnosed as AIDS (A). Population H and A are further divided into undiagnosed(Au

and Hu) and diagnosed groups(Ad and Hd). For this model the authors assumed that all

diagnosed individuals are brought to be under ART.They also assumed that ART reduces

one’s infectiousness on a whole from β to ξβ where parameter ξ takes a value between

zero and one, and the value 1 − ξ represents the relative reduction in the transmissi-

bility.This model found that early removal from (undiagnosed) infectious state plays an

important part in the population impact of test and treat strategy.Graphs from numerical

simulations showed that if the rate of diagnosis is greater than a certain threshold UTT

successfully controls the HIV epidemic.However, several realistic aspects of HIV treatment

such as treatment failure and the issue of treatment dropouts where not captured by this

model.

Lastly, we will consider a recent model by Omondi et al. (2018) of the impact of test-

ing,treatment and control of HIV transmission in Kenya.In their study the authors em-

ployed a deterministic model to describe the transmission dynamics of HIV and the impact

of testing and treatment on the disease transmission .The model comprises of susceptible

class and infection class which is further divided into four compartments.Surveillance data

was used to describe the spread of HIV and they assumed a scenario of UTT.Stability

analysis of the model equilibria was carried out by constructing suitable Lyapunov func-

tion.Sensitivity analysis was done using the normalised forward sensitivity index method

in order to determine the relative importance of model parameters on disease transmis-

sion .The next-generation matrix method was used to deduce the reproduction number

R0.They showed that the disease-free equilibrium of the system is globally asymptoti-

cally stable if R0 ≤ 1 and unstable otherwise.Furthermore, they showed that there exists

a unique endemic equilibrium of the system and is globally asymptotically stable whenever

R0 > 0.The results of sensitivity analysis showed that the model system is most sensitive

to infection contact rates, testing and counselling rates and treatment rates.However, this

study and the rest of the studies on UTT presented, did not investigate the potential

impact of the combination of treatment failure and treatment dropouts on the success of

this approach.
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Chapter 4

The model

4.1 Model formulation

A system of non linear ordinary differential equations will be used to model the trans-

mission dynamics of HIV/AIDS in a population.The proposed model subdivides the total

human population N(t) at time t into five classes, namely, the susceptible class (S(t)),

unaware infectives (I1(t)), treatment class (IT (t)), treatment dropout class (I2(t)), AIDS

class (A(t)), so that

N(t) = S(t) + I1(t) + IT (t) + I2(t) + A(t).

The susceptibles are individuals that have not contracted the HIV infection but can

become infected due to interaction with the infectious groups. The unaware infectives

are all HIV infected individuals(primary, asymptomatic and chronic HIV stages) who are

ignorant of their HIV-positive status. The treatment class are those infected individuals

who have been screened for HIV and are immediately put on ART. Treatment dropouts

class are those individuals who where previously on ART and have since stopped taking

their medication and the AIDS class consists of those individuals infected with HIV and

have clinical symptoms of AIDS.

The susceptible population is replenished by the recruitment of individuals into the sex-

ually active population at a rate π.These individuals contract HIV infection, following

effective contact with infectives in classes I1, I2 and IT with force of infection φ, where

φ =
β1I1 + β2I2 + β3IT

N

with β1, β2 and β3 representing the transmission parameters for each class respectively.

Natural deaths results in a decrease of the population in all the compartments at the rate
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µ.The rate of change for the susceptible individuals is given by

dS

dt
= π − β1I1

N
− β2I2

N
− β3IT

N
− µS.

The unaware infectives class increases due to infection of the susceptible group at a rate

φ .It is decreased due to natural death and movement to the treatment class of those who

would have been screened and tested positive to HIV at a rate ρ1.Also, it is decreased by

the progression to full blown AIDS of unaware infectives who are not screened at a rate

λ1.Hence, the rate of change of unaware infectives is given by

dI1

dt
=
β1I1

N
+
β2I2

N
+
β3IT
N
− (ρ1 + λ1 + µ)I1.

The population of individuals in the treatment class is increased by the enrolment into

ART of unaware infectives, treatment dropouts and those in the AIDS class at rates ρ1,ρ2

and ρ3 respectively.The treatment class is decreased as result of progression of individuals

on ART to the AIDS class due to treatment failure at a rate θ.In addition the decrease is

due to treatment dropouts at a rate ε and natural death.So that

dIT
dt

= ρ1I1 + ρ2I2 − (θ + ε+ µ)IT .

The treatment dropouts class increases as individuals in the treatment class stop ART at

a rate ε.This population decreases due to enrolment back to treatment of those who would

have stopped ART at a rate ρ2, progression to AIDS at a rate λ2 and natural death.This

gives
dI2

dt
= εIT − (ρ2 + λ2 + µ)I2.

The population of individuals infected with AIDS is increased by the progression of un-

aware infectives and treatment dropouts to full blown AIDS at a rate λ1 and λ2 respec-

tively.In addition the class grows as some those in the treatment class experience treatment

failure and proceed to AIDS at the rate θ.This class is reduced by natural death and due

to AIDS related death at a rate σ.Also, the AIDS class is reduced as some of the patients

are initiated on treatment and respond to treatment such that they move to the infective

class IT at a rate ρ3 .Therefore, the rate of change for the AIDS class is given by

dA

dt
= λ1I1 + λ2I2 + θIT − (ρ3 + σ + µ)A.

The schematic diagram of the model is as shown in Figure 4.1.
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Figure 4.1: A compartmental flow diagram for universal test and treatment model of
HIV/AIDS with demography.

Model assumptions

The following are some of the assumptions made in the construction of the HIV/AIDS

model:

• The population is considered to be homogeneously mixed and hence there is uniform

interaction of individuals in all the compartments.

• Though some susceptible individuals may have some level of immunity to infection

due to genetic reasons or due to pre exposure prophylaxis , we assume each suscep-

tible individual has an equal chance of acquiring HIV infection when they get into

contact with infectives.

• There is no vertical transmission of the infection, meaning there is no infection from

mother to the unborn baby.

• This is a varying population model where susceptible individuals are recruited into

the population at a constant rate π.

• Unaware infectives, treatment dropouts and those in the treatment class progress

to the AIDS class at different rates λ1,λ2 and θ respectively.

• Since it is possible for treatment failure to be diagnosed and averted before an

infected individual who is on ART proceeds to full blown AIDS, in this model we

have assumed that all cases of treatment failure lead to AIDS.

• In this model we assume that those in the AIDS class are sexually inactive and do

not contribute to any new infections.
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• The level of infectivity of the infectious groups I1, IT and I2 are different with

rates β1 , β3 and β2 respectively, where β3 < β2 < β1.Those in the treatment

class have the lowest infectivity as a result of reduced viral load due to the effect

of ART.Treatment dropouts are considered to have lower infectivity compared to

unaware infectives since they at least know that they are HIV positive hence their

sexual behaviour is assumed to have changed.

• The model considers only heterosexual transmission of HIV infection.

Based on the assumptions above and the model diagram, the model representing the dy-

namics of HIV/AIDS is governed by the following system of non linear ordinary differential

equations:

dS
dt

= π − φS − µS,
dI1
dt

= φS − (ρ1 + λ1 + µ)I1,
dIT
dt

= ρ1I1 + ρ2I2 + ρ3A− (θ + ε+ µ)IT ,
dI2
dt

= εIT − (ρ2 + λ2 + µ)I2,
dA
dt

= λ1I1 + λ2I2 + θIT − (ρ3 + µ+ σ)A,

(4.1)

subject to the following initial conditions

S(0) > 0, I1(0) ≥ 0, IT (0) ≥ 0, I2(0) ≥ 0, A(0) ≥ 0. (4.2)

4.2 Basic properties of the model

Feasible Solution

This epidemiological model deals with a population of humans and therefore it is im-

portant to consider non negative populations.Hence, the model should be considered in

(feasible) regions where such property of non-negativity is preserved.

Lemma 2. Let the feasible region Ω be defined by

Ω =

{
(S, I1, IT , I2, A) ∈ R5

+ : 0 ≤ N ≤ π

µ

}
,

with the initial conditions as given in (4.2). The region Ω is positively invariant with

respect to the system (4.1) for all t > 0.

Proof. By adding the equations of system 4.1, we obtain

dN

dt
= π − µN − σA
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Thus, it follows that
dN

dt
≤ π − µN (4.3)

We then get the general solution of equation (4.3) as,

N ≤ π

µ
+ Ce−µt

Applying the initial conditions in (4.2), we get C = N(0)− π
µ
. So that

N =
π

µ
+

(
N(0)− π

µ

)
e−µt (4.4)

From equation (4.4) we can deduce that as t → ∞ the population reaches its limiting

value π
µ
.Thus, all the feasible solutions of system (4.1) enter the region Ω and stay inside

it. Hence the region Ω is positively invariant.Therefore, we have proven that the system

is well-posed epidemiologically and hence it is sufficient to study the system (4.1) in the

region Ω.

Positivity of solutions

Since the model (4.1) describes changes in the human population it is important to show

that all the state variables (S, I1, IT , I2 and A) are non-negative for all time.

Lemma 3. The solutions S(t), I(t)1, I(t)T , I(t)2 and A(t) of the system (4.1) are positive

∀t ≥ 0, given the initial conditions (4.2).

Proof. From the first equation of system (4.1) we have

dS

dt
≥ −(Φ + µ)S.

By integrating both sides we have,

∫
dS

S
≥ −

∫
(Φ + µ)dt

lnS ≥ B −
(
µt+

∫
Φdt
)

S ≥ Ce−
(
µt+

∫
Φdt
)
.

Applying the initial conditions we get,

S(t) ≥ S(0)e−
(
µt+

∫
Φdt
)
.
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Since e−
(
µt+

∫
Φdt
)
> 0 , this implies that S(t) is always positive.

Similarly, from the second equation of system (4.1) we have

dI1

dt
≥ −(ρ1 + λ1 + µ1)I1∫

dI1

I1

≥ −
∫

(ρ1 + λ1 + µ1)

ln I1 ≥ B − (ρ1 + λ1 + µ1)t

I1 ≥ Ce−(ρ1+λ1+µ1)t.

Applying initial conditions we have,

I1(t) ≥ I(0)e−(ρ1+λ1+µ1)t.

Since e−(ρ1+λ1+µ1)t > 0 this means I1 ≥ 0 for all t ≥ 0.It can also be shown using the

same method for the remaining equations of system (4.1) that IT (t) ≥ 0 , I2(t) ≥ 0 and

A(t) ≥ 0 for all t ≥ 0.
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Chapter 5

Model Analysis

5.1 Disease free equilibrium(DFE)

The DFE point is a steady state solution where there is no HIV infection and AIDS

disease in the population therefore,

I1 = IT = I2 = A = 0. (5.1)

To obtain the DFE (E0) we set the right-hand side of the equations in system (4.1) to

zero and apply equation (5.1) and then solve for S, I1, IT , I2 and A.Hence,

E0 = (S, I1, IT , I2, A) =

(
π

µ
, 0, 0, 0, 0

)
.

5.1.1 Reproduction number and the local stability of the DFE

The basic reproduction number R0 is defined as the number of secondary infections pro-

duced by an infectious individual for the duration of infectiousness in a totally susceptible

population.We are going to use the next generation operator method on system (4.1) fol-

lowing Van den Driessche and Watmough (2002) to determine the model R0.The infected

compartments are I1, IT , I2 and A.Let F(x) represent the rate of appearance of new infec-

tions in the infected compartments and let V(x) represent rate at which the population in

each compartment changes due to transfers between compartments.The matrices showing

these movements are given by,
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F(x) =



β1I1+β2IT +β3I2
N

S

0

0

0

0

 ,

V(x) =


(ρ1 + λ1 + µ)I1

(θ + ε+ µ)IT − ρ1I1 − ρ2I2 − ρ3A

(ρ2 + λ2 + µ)I2 − εIT
(ρ3 + µ+ σ)A− λ1I1 − λ2I2 − θIT


The Jacobian matrix of F(x) evaluated at the disease free equilibrium point E0 is given

by,

F =
∂F(E0)

∂x
=


β1 β3 β2 0

0 0 0 0

0 0 0 0

0 0 0 0


The Jacobian matrix of V(x) evaluated at the DFE is given by

V =
∂V(E0)

∂x
=


ρ1 + λ1 + µ 0 0 0

−ρ1 θ + ε+ µ −ρ2 −ρ3

0 −ε ρ2 + λ2 + µ 0

−λ1 −θ −λ2 ρ3 + µ+ σ


If we let ,

k1 = ρ1 + λ1 + µ

k2 = θ + ε+ µ

k3 = ρ2 + λ2 + µ

k4 = ρ3 + µ+ σ

k5 = µ+ φ
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then V −1 exists and is given by

V −1 =



1
k1

0 0 0

k3k4ρ1+k3λ1ρ3
detV

k3k4
detV

k4ρ2+λ2ρ3
detV

k3ρ3
detV

k4ρ1ε+λ1ρ3ε
detV

k4ε
detV

k2k4−ρ3θ
detV

ρ3ε
detV

k2k3λ1+k3ρ1θ−λ1ρ2ε+λ2ρ1ε
detV

k3θ+λ2ε
detV

k2λ2+ρ2θ
detV

k2k3−ρ2ε
detV


where detV is the determinant of matrix V computed as

k1(k3ρ3θ − k2k3k4 + k4ρ2ε+ λ2ρ3ε).

Using a computer software(Matlab 2018a) the next generation matrix FV −1 is given by
β1
k1

+ β2(k4ρ1ε+λ1ρ3ε)
detV

+ β3(k3k4ρ1+k3λ1ρ3)
detV

−β2k4ε
M
− β3k3k4

M
β2(ρ3θ−k2k4)

M
− β3(k4ρ2+λ2ρ3)

M
−β2ρ3ε

M
− β3k3ρ3

M

0 0 0 0

0 0 0 0

0 0 0 0


where M = k3ρ3θ − k2k3k4 + k4ρ2ε+ λ2ρ3ε.

Therefore, the basic reproduction number R0 is given by

R0 = ρ(FV −1) =
β1

k1

+
β2(k4ρ1ε+ λ1ρ3ε)

k1(k3ρ3θ − k2k3k4 + k4ρ2ε+ λ2ρ3ε)
+

β3(k3k4ρ1 + k3λ1ρ3)

k1(k3ρ3θ − k2k3k4 + k4ρ2ε+ λ2ρ3ε)
,

where ρ is the spectral radius of the next generation matrix FV −1.

From the expression for R0 it can be seen that the first, second and third terms represent

the contribution of unaware infectives, treatment dropouts and those in the treatment

class to the overall model reproduction number, respectively.This result mean that the

number of secondary infections produced by one infectious individuals during their entire

period of infectiousness is influenced not only by unaware infectives but by the contribu-

tion of those on treatment and treatment dropouts.Therefore, current strategies to reduce

transmission of the infection such as promoting condom use and contact tracing should

also focus on these groups in order to curb the epidemic.

We are going to use results from Theorem 9 as discussed in Chapter 3 to assess the

local stability of E0.The disease free equilibrium point E0 is locally asymptotically stable
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if R0 < 1.This implies that HIV/AIDS can be effectively controlled in the population

(given R0 < 1) if the initial sizes of the sub populations of model (4.1) are near the

disease free equilibrium point, E0.If R0 > 1 then the DFE becomes unstable and the

endemic equilibrium because locally stable meaning that a single infected individual will

lead to more than one secondary cases during their entire course of infectiousness in a

completely susceptible population.

5.2 The endemic equilibrium (EE) and its local sta-

bility

The EE can be computed by equating the right-hand side of equations in system(4.1) to

zero and solving them in terms of the force of infection, φ. At equilibria,

π − φS∗ − µS∗ = 0, (5.2)

φS∗ − (ρ1 + λ1 + µ)I∗1 = 0, (5.3)

ρ1I
∗
1 + ρ2I

∗
2 + ρ3A

∗ − (θ + ε+ µ)I∗T = 0, (5.4)

εI∗T − (ρ2 + λ2 + µ)I∗2 = 0, (5.5)

λ1I
∗
1 + λ2I

∗
2 + θI∗T − (ρ3 + µ+ σ)A∗ = 0, (5.6)

From equation (5.2), we have

S∗ =
π

K5

. (5.7)

Substituting equation (5.7) in equation (5.3), gives

I∗1 =
φπ

k1k5

(5.8)

From equation (5.5),

I∗2 =
εIT
k3

(5.9)

Substituting equations (5.8) and (5.9) in equations (5.4) and (5.6) , we get the following

simultaneous equations
ρ1φπ
k1k5

+ (ρ2ε−k2k3)
k3

I∗T + ρ3A
∗ = 0

λ1φπ
k1k5

+ (λ2ε+θk3)
k3

I∗T − k4A
∗ = 0

(5.10)

From (5.10)

I∗T =
k3φπ(k4ρ1 + ρ3λ1)

k1k4k5(k2k3 − ρ2ε)− k1k5ρ3(λ2ε+ k3θ)
, (5.11)

A∗ =
k3λ1φπ + k1k5(λ2ε+ k3θ)I

∗
T

k1k3k4k5

, (5.12)
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and from (5.9),

I∗2 =
k3φπε(k4ρ1 + ρ3λ1)

k3[k1k4k5(k2k3 − ρ2ε)− k1k5ρ3(λ2ε+ k3θ)]
. (5.13)

Therefore a unique endemic equilibrium point exists given by E1 = (S∗, I∗1 , I
∗
T , I

∗
2 , A

∗).

To investigate the local stability of E1 we will consider the signs of the eigenvalues of the

Jacobian matrix of system (4.1) evaluated at the endemic equilibrium point, E1.At the

endemic equilibrium point the Jacobian matrix of this system is given by

JE1 =


−(φ1 + µ) −φ2 −φ3 −φ4 0

φ1 φ2 − k1 φ3 φ4 0

0 ρ1 −k2 ρ2 ρ3

0 0 ε −k3 0

0 λ1 θ λ2 −k4

 ,

where

φ1 =
β1I

∗
1 + β2I

∗
2 + β3I

∗
T

N
,

φ2 =
β1S

∗

N
,

φ3 =
β3S

∗

N
,

φ4 =
β2S

∗

N
.

The characteristic equation corresponding to JE1 is given by,

P (ψ) = ψ5 + a1ψ
4 + a2ψ

3 + a3ψ
2 + a4ψ + a5 = 0,
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where

a1 = φ1 − φ2 + k1 + k2 + k3 + k4 + µ,

a2 = φ1(k1 + k2 + k3 + k4) + φ2(k3 − k2 − k4 − µ)− φ3ρ1 − ερ2 + k1(k2 + k3 + k4 + µ)

+ k2(k3 + k4 + µ) + k3(k4 + µ) + k4µ− ρ3θ,

a3 = ερ2(φ2 − φ1)− φ3(λ1ρ3 + k3ρ1 + k4ρ1 + µρ1)− φ4ερ1 + φ1(k1k2 + k1k3 + k1k4 + k2k3 + k2k4

+ k3k4 − ρ3θ)− φ2(k2k3 + k2k4 + k3k4 + k2µ+ k3µ+ k4µ− ρ3θ) + µ(k1k2 + k1k3 + k1k4 + k2k3

+ k2k4 + k3k4)− ε(ρ2µ+ λ2ρ3 + k1ρ2 + k4ρ2)− ρ3θ(k1 + k3 + µ)

+ k1k3(k2 + k4) + k2k4(k1 + k3),

a4 = φ1(k1k2k3 + k1k2k4 + k1k3k4 + k2k3k4)− φ1ε(λ2ρ3 + k1ρ2 + k4ρ2)− φ1θρ3(k1 + k3) + φ2µ(ρ3θ

+ ερ2 − k2k3 − k2k4 − k3k4) + φ2(λ2ερ3 + εk4ρ2 − k2k3k4 + k3ρ3θ)− φ3µ(k4ρ1 + k3ρ1 + λ1ρ3)

− φ3k3(λ1ρ3 + k4ρ1)− φ4ε(λ1ρ3 + k4ρ1 + µρ1)− εµ(λ2ρ3 + k1ρ2 + k4ρ2)− θρ3(µk1 + µk3

+ k1k3) + µ(k1k2k3 + k1k2k4 + k1k3k4 + k2k3k4)− εk1(k4ρ2 + λ2ρ3) + k1k2k3k4,

a5 = φ1k1(k2k3k4 − εk4ρ2 − λ2ερ3 − k3ρ3θ) + φ2µ(λ2ερ3 + εk4ρ2 − k2k3k4 + k3ρ3θ)− φ3k3µ(λ1ρ3

+ k4ρ1)− φ4εµ(λ1ρ3 + k4ρ1)− εk1µ(λ2ρ3 + k4ρ2) + k1k3µ(k2k4 − ρ3θ).

The system has a locally asymptotically stable endemic equilibrium point E1 if all the

eigenvalues of JE1 are either negative or have negative real parts.From the Routh-Hurwitz

stability criterion for a fifth order polynomial, all the eigenvalues are negative or have

negative real parts if the following conditions are satisfied:

ai > 0 where i = 1, 2, 3, 4, 5 , a1a2a3 > a2
3 + a2

1a4 and

(a1a4 − a5)(a1a2a3 − a2
3 − a2

1a4) > a5(a1a2 − a3)2 + a1a
2
5.

5.3 Numerical simulations

In this section, we present analytical results of the numerical simulations of model (4.1)

using Matlab 2018a.The simulations are done for a hypothetical population, N = 100, 000

and the initial conditions of the state variables considered

S(0) = 10, 000, I1(0) = 300, IT (0) = 30, I2(0) = 5, A(0) = 5. (5.14)

This population size would suit an averagely sized district in Zimbambwe and we have

assumed the initial conditions in (5.14). The parameter values used in the numerical

simulations of model (4.1) are presented in Table 5.1.

37



Parameter Value (per unit
time)

Reference

π 10 Mahato et al. (2014)
µ 0.02 Omondi et al. (2018)
σ 0.8 Mahato et al. (2014)
λ1 0.9 Mahato et al. (2014)
λ2 0.01 Safiel et al. (2012)
ρ1 0.88 Omondi et al. (2018)
ρ2 0.2 Estimated
ρ3 0.1 Safiel et al. (2012)
β1 2.58 Safiel et al. (2012)
β2 0.1 Safiel et al. (2012)
β3 0.01 Safiel et al. (2012)
θ 0.01 Omondi et al. (2018)
ε 0.25 Mutasa-Apollo et al. (2014)

Table 5.1: Parameters used in the numerical simulations of model (4.1).
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Figure 5.1: textitTime series of population in different classes.

As shown in Figure 5.1., as the number of infected individuals who are on treatment

increases the size of the susceptible population decreases over time then reaches zero.Also

the increase in the treatment class results in an increase in the treatment dropouts and

AIDS populations.

5.3.1 Effects of treatment failure on the dynamics of system 4.1

The possible effects of increasing treatment failure on the dynamics of the HIV/AIDS

population are shown in Figure 5.2.
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Figure 5.2: Simulation results showing the dynamics of all individual populations of system
(4.1) for different values of θ, the treatment failure rate.Initial conditions are as given in
(5.14) and parameter values are as presented in Table 5.1.

Figure 5.2 shows that an increase in the rate of treatment failure results in an increase in

the maximum population of full blown AIDS individuals.However, the AIDS population

decreases to zero overtime and this can be due to treatment with second and third line
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ART which lowers the viral load and increases their cd4 counts.Also, the AIDS population

decreases due to death as a result of AIDS related conditions.Moreover, the length of time

it takes for the AIDS population to reach zero increases as the rate of treatment failure

increases.It is seen also that increased treatment failure causes a decrease in the maximum

population of treatment and treatment dropouts classes.Changes in the rate of treatment

failure do not change the susceptibles and unaware infectives populations.

5.3.2 Effects of treatment dropouts on the dynamics of system

4.1

The effect of treatment dropouts on the population dynamics of HIV/AIDS is presented

in Figure 5.3.
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Figure 5.3: Simulation results showing the dynamics of all individual populations of system
(4.1) for different values of ε, the treatment dropout rate.Initial conditions are as given
in (5.14) and parameter values are as presented in Table 5.1.

Figure 5.3 shows that increasing the rate of treatment dropouts results in an increased

maximum populations of treatment dropouts, unaware infectives and AIDS classes. The

observed increase in the maximum population of AIDS individuals can be due to an
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increase in the viral load of those who would have stopped treatment resulting in their

cd4 count dropping leading to deterioration of their disease condition.Also, the maximum

population of unaware infectives is greatest for higher rates of treatment dropouts and

this can be explained by the fact that stopping treatment increases the level of infectivity

and therefore treatment dropouts continue to spread the infection at a higher rate of

infectivity than those on treatment.However, the length of time it takes for the treatment

dropouts, unaware infectives and AIDS populations to reach zero is fairly the same for

different rates of treatment dropout.

5.3.3 Effects of re initiation of treatment dropouts back to ART

on the dynamics of system 4.1

The results of the effects of treatment dropouts obtained by varying ρ2 is explored in

Figure 5.4.
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Figure 5.4: Simulation results showing the dynamics of all individual populations of
system (4.1) for different values of ρ2, the rate of enrolment into ART of treatment
dropouts.Initial conditions are as given in (5.14) and parameter values are as presented
in Table 5.1.

The simulation results in Figure 5.4 illustrate that an increase in the rate at which treat-

ment dropouts are enrolled back into ART results in a decrease in the maximum pop-
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ulation of treatment dropouts and a moderate decrease in the the AIDS and unaware

infectives population.This result highlights the potential benefits of increasing efforts of

finding and enrolling back to ART of those who would have stopped their treatment.How

ever, increased enrolment back to ART results in the treatment class growing bigger and

hence the need for more resources for ART programmes.

5.3.4 Effects of treatment failure on R0

We present the effects of treatment failure on R0 in Figure 5.5, obtained by varying the

rate of treatment failure, θ.
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Figure 5.5: Effects of treatment failure on R0.Other parameter values are as presented in
Table 5.1.

It can be seen from Figure 5.5 that an increase in treatment failure results in a reduction of

R0.This result cannot be used as an intervention strategy against the HIV/AIDS epidemic

because the observed reduction of R0 is due to increased progression to the AIDS class

as a result of increased treatment failure.Since those who are in the AIDS class do not

contribute to new infections due to morbidity and they are removed from the population

at a higher rate as a result of the effect of both natural death and disease related death

which explains the observed reduction in the R0 .However, this finding highlights the

possible confounding effect of treatment failure on researches that report a reduction of

R0 of HIV/AIDS due to treatment interventions.
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5.3.5 Effects of treatment dropouts on R0

Numerical simulations for assessing the effects treatment dropouts on R0 is presented in

Figure 5.6.
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Figure 5.6: Effects of treatment dropouts on R0.Other parameter values are as presented
in Table 5.1.

From the left graph in Figure 5.6 the simulation results show that as the rate of people

stopping treatment increases, R0 increases upto an equilibrium point.This is so because

we have more people transmitting the disease at a much higher level of infectivity than

those still adhering to treatment.In addition the graph shows that increasing the rate of

re introduction to ART of treatment dropouts(ρ2) reduces the maximum value of R0 that

can be attained though the value of R0 still remains above unit.We also note that even in

the absence of treatment dropouts(when ε=0), R0 is still greater than unit meaning the

disease will still persist in the population in the absence of other control measures.The

graph on the right side indicates that treatment of unaware infectives only can bring a

stop to the spread of the infection however higher rates of treatment(ρ1) must be achieved

to bring R0 below unit in the presence of treatment dropouts than in its absence(when

ε = 0).

5.3.6 Model data fitting

To predict the expected changes in the various sub populations of model 4.1 we used data

from the National AIDS Council of Zimbabwe for Midlands Province.The anaysis is done

using R software version 3.6.1 and the results of this analysis are as shown in Fig 5.7.

45



Figure 5.7: Predicted changes in the sub populations of model 4.1 over time(in years).

It is seen from Fig 5.7 that the number of susceptibles will remain constant and the un-

aware infectives, treatment class and AIDS class will fluctuate over time.However, the

class of treatment dropouts will initially remain constant but will gradually start to de-

crease.This result suggest that, with the current strategies to retain and maintain individ-

uals on ART, marked decreases in the rate of treatment dropouts can only be expected

to drop after close to a decade from now highlighting the need to increase efforts against

the issue of treatment dropouts.
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Chapter 6

Discussion and conclusion

In this dissertation we considered a mathematical model of HIV/AIDS to study the possi-

ble effects of treatment failure and treatment dropouts on the population dynamics of the

infection.The model incorporated a UTT scenario and a separate sub population of treat-

ment dropout individuals. The basic reproduction number R0 and the model equilibria is

computed.Analysis of the model shows that the disease free equilibrium is locally stable

if R0 < 1 and unstable otherwise.Practical application of this result is that keeping the

reproduction number below unity may be necessary to end the spread of HIV.If R0 > 0

the disease free equilibrium loses its stability and there exists an endemic equilibrium and

the disease persists in the population.The conditions for the local stability of the endemic

equilibrium where also given.

Numerical simulations where conducted to show the effects of treatment failure and treat-

ment dropout on the dynamics of the HIV/AIDS epidemic.According to the numerical

results, we conclude that increasing treatment dropouts results in increased transmission

of HIV in a population and an increase in efforts to enrol treatment dropouts back on

ART reduces the spread of the infection.However, we note that even in the absence of

treatment dropouts and maximum efforts to enrol treatment dropouts the basic reproduc-

tion number remains above unity suggest that preventing treatment dropouts alone is not

enough in the fight against the epidemic.This observation aligns with findings by Bhunu

et al. (2011) in which a single intervention strategy could not be relied on for effectively

controlling or eradicating HIV/AIDS.Also the study showed that an increase in treatment

failure results in a decrease in the transmission of the infection however controlling treat-

ment failure alone does not bring R0 below unit.Though, this finding can not be applied

in real practice it points to the need to scrutinize any observed reduction of the basic re-

production number in studies of UTT for this possible effects of treatment failure on the

basic reproduction number.Hence, this model highlights the need to focus on increasing

efforts of reducing treatment dropouts in combination with other intervention strategies,

through monitoring adherence and identifying and enrolling back to ART of treatment

47



dropouts.Also there is need to improve on early diagnosis of treatment failure such that

those on treatment do not progress to AIDS before they are put on second or third line

ART.

The main limitation of this study is that simulations where not based on empirical data

and where purely qualitative.In addition the model did not consider immigration of in-

fected individuals into the system and other modes of transmission .Also the model did

not incorporate differential sucseptibility due to the current strategy of the use of ART as

pre exposure prophylaxis which reduces the probability of getting infected.Incorporating

these aspects in future work will improve in understanding the dynamics of the infection.
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