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ABSTRACT 

The unavailability of strong technologies in the police force as far as traffic offenses are 

concerned has led to many law violators going unpunished, and the root cause of this is the 

limitation that all traffic road blocks around the country are totally dependent on human effort or 

power. The need for cheaper, smarter and efficient traffic monitoring system facilities in the 

police force has brought to introduction of small unmanned copters that can execute human tasks 

with less resources being used. The document will outline a quadcopter based surveillance and 

supplies’ transport system using Proportional, Integral and derivate(PID), Radio frequency 

technologies (RF) with Kalman filtering algorithms to control a quadcopter and Human Machine 

Interface(HMI) using processing 2.2.1 to show video surveillance and aid in controls. An Ardu-

pilot (microprocessor) was implemented for the flight system. 
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CHAPTER 1 - INTRODUCTION 

1.1 Background of the study 

Research and development of unmanned aerial vehicle (UAV) and micro aerial vehicle 

(MAV) is increasing nowadays, since the application of UAV and MAV apply to a wide range of 

areas such as search and rescue missions, military surveillance, film making, agriculture and 

others. In U.S. Coast Guard maritime search and rescue missions, teams use UAVs that are 

attached with infrared cameras to assist the mission to search the target [1]. Quadcopters or quad-

rotor aircrafts are one of the UAVs that are major focuses of active researches in recent years. 

Compare to terrestrial mobile robot that often possible to limit the model to kinematics, 

Quadcopters required dynamics in order to account for gravity effect and aerodynamic forces [2]. 

Quadcopters are operated by thrust that is produced by four motors that are attached to its body. 

It has four input forces and six output states (x, y,z, θ, ψ, ω) and it is an under-actuated system, 

such it enables the Quadcopter to carry more load [3]. A Quadcopter has advantages over the 

conventional helicopter were the mechanical design is simpler besides that, Quadcopters change 

direction by 

Manipulating the individual propeller’s speed and do not require cyclic and collective 

pitch control [4]. 

A quadcopter is an aerial vehicle that uses four rotors for lift, steering, and stabilization. Unlike 

other aerial vehicles, the quadcopter can achieve vertical flight in a more stable condition. The 

main advantages of the quadrotor over the helicopter is that it is not affected by the torque issues 

that a helicopter experiences due to the main rotor such investment in these small planes is  

invaluable in modern day research. Furthermore, due to the quadcopter’s cyclic design, it is 

easier to construct and maintain [5]. 

Various groups such as the military, engineers, researchers, and hobbyists have been developing 

quadcopters to understand different technical areas. For example, quadcopters can be used for 

reconnaissance and collecting data. This could range from searching for survival victims in a 

disaster area to checking the state of electrical power lines. Some quadcopters in production 

today can hold light payloads, such as food and medical supplies, and deliver them to areas 

where normal planes cannot reach [6]. 
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Figure 1: Generic Quadrotor 

1.2 Problem Definition 

“A total of 269 vehicles have been impounded since 1st October 2017 for moving on the 

country’s roads whilst the owners has not effected change of ownership as required in terms of 

the Vehicle Registration and Licensing Act (Chapter 13: 14). The ZRP as a law enforcement 

agency has noted that, there has been an increase in flagrant disregard of traffic laws by 

motorists and the commission of criminal acts by elements using these unregistered vehicles or 

those without registration number plates. 67 vehicles were impounded for operating as Public 

Service Vehicle yet they were not registered in terms of the Road Motor Transportation Act 

(Chapter 13: 10).” Nyathi said [7]. 

First hand detail  from the Bulawayo Police sites that, they have impounded more than 100 

vehicles without registration number plates amid reports that unregistered cars are linked to 

serious crimes in the city [8]. 

October 18, 2011 – There are several cars in Harare that do not have registration numbers while 

most are suspected to have been used in criminal activities, making it difficult for police to trace 

them. Police impounded 118 unregistered vehicles. This has resulted in members of public losing 

valuables to robbers using vehicles without number plates after being offered lifts. Armed 

robbers have been using some of these vehicles as getaway cars after robbing members [9]. 
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1.3 Proposed Solution 

Design and Implementation of a quadrotor traffic system which is programmed to remotely 

capture real time vehicle images. The videos and images will be transmitted to a base/ control 

station (CS) located on the ground for image processing. 

1.4 Aim 

To design an aerial system that remotely monitors the activities of traffic in the CBD where the 

ground personnel are not deployed. To design a UAV that captures and relay information to a 

main control station.  

1.5 Project objectives 

1. Design a remotely controlled fly system with detachable payload. 

2. Create camera payload interface for surveillance i.e. images and videos. 

3. Image processing system that matches vehicles number plates with existing database for 

identification.  

1.6 Project scope/ constrains 

The scope includes: weather conditions, distance and space: 

(a) Quadcopter can only operate in sunny day or dry condition. 

(b) This Quadcopter design operates within a distance not more than 100m line of sight from 

the wireless receiver. 

(c) Quadcopter is controlled by Arduino base microcontroller. 

(d) Quadcopter will be driven by brushless motor control via the electronic speed controllers. 
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CHAPTER 2 - LITERATURE REVIEW AND THEORETICAL BACKGROUND OF 

THE PROJECT 

2.1 Motivation 

Unmanned aerial vehicles are very much applicable in various area as they portray significant 

characteristics which include maneuverability, small size, low cost of maintenance and 

manufacturing. They can maneuver very well in tight areas; can be used to carry load depending 

on the quadcopter’s capacity. e. g. medical supplies. 

2.2 History of the Quadrotor 

The quadrotor protocol architecture comprises of both software and hardware components. 

Communication between the remote and the quadcopter is about 200m apart, on average, with a 

power consumption of 100mA. A fundamental consideration was to design a quadrotor that has a 

battery life that is prolonged, could fly up to 1km, and had the capabilities of taking surveillance 

for an extended period of time [1]. 

A quadrotor is a UAV which consists of four electric motors with propellers attached to them. 

Basically, for any kind of maneuver, there are four upward rotors: for it to fly in its region. Each 

rotor plays an important role in direction and balance of the quadrotor as well as torque about its 

center rotation, plus a drag force opposite to the quadrotor’s direction of flight. All the motors on 

the quadrotor are identical. Adjacent propellers are oriented opposite to each other: when a 

propeller is spinning in the clockwise direction, then the two adjacent propellers will be spinning 

in an anticlockwise direction. This is to ensure that torque are balanced i.e. if all propellers are 

spinning at the same speed [2].  

In this project, I used a commercial frame building on it with the electronics required. Together 

with the frame – attached were motors and propellers. These components determined how much 

space could be available for the electronics as well as the amount of weight the quadrotor would 

be able to lift without any complications. Another special component was the microcontroller, 

which was an open source Arduino board on which the software (own software) was to be 

placed. Sensor boards were also added to the microcontroller, which would be required to 

achieve flight. On the sensor board, were three different sensors namely the gyroscope, compass, 
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accelerometer, which all work hand-in-hand to maintain stability of flight while in motion or 

hovering. Finally, a Lipo battery was employed due to its best ratio of weight to power. This 

particular battery proved sufficiency to completion of the design, assembly, as well as testing of 

the quadrotor system and experiments have shown that as this quadrotor had plenty of thrust, it 

needed a larger battery for the mission flight so as improving flight time.  

The camera type for surveillance capability for the UAV is a color camera that employs a 

transistor- transistor-level (TTL) logic signal. The camera is capable displaying a series of 

images through a serial communication output as well as 30 frames per second (fps) National 

Television System Committee (NTSC) formatted output. All communication of all sensors and 

electric hardware in this project is done over a TTL serial connection, including the wireless 

Bluetooth module used.  The main reason for choosing this type of a camera is the ability to 

integrate the video over the serial connection seamlessly. Additional reasons include the fact that 

it operated from a 5V power supply, just like the rest of the sensors, and the power consumption 

was 10W at <100mA. The camera has the ability to capture VGA, QVGA, QQVGA picture 

formats and also allowing the image to be compressed with various compression degrees. This 

low for the shrinking of the image file size to under 30kb per image frame which is small enough 

to allow frame rate of about 2.5 fps while transmitting at 115 200 bps. This frame rate should be 

sufficient so as to guide navigation and perform surveillance [3]. The Arduino processor board 

controls the camera. A series of hex commands are sent from the Arduino to the camera: to 

initialize and then begin a series of image collections. The images are transmitted from the 

camera serially in hex format to the Arduino and the transmitted to the ground-based computer 

via the Bluetooth modules for processing. 

The Oxford Dictionary defines a drone as a ‘remote-less controlled piloted aircraft or missile.’ 

Drones were first built after the World War 𝐼𝐼 in which unmanned jets, such as the Ryan Fire bee 

began field operation and from then the number of drones employed in the military sector has 

increased greatly to such an extent that NEW York Time decided to refer to it as a new paradigm 

for warfare. The US-military sector was the first to implement the idea of aerial military 

surveillance as far as during the Civil War, although other countries followed suit in the use of 

UAVs. Also a flashback reveals that even before the Wright brothers taught the fledgling 

aviation secrets of controlled flight and also other efforts towards unmanned combat vehicles 
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existed such as balloons, which were used by the Austrian army in an attack on Venice in 1849 

as well as the Japanese forces in the Fu-go bombings in 1945. The first individual to patent a 

remote-control of unmanned vehicles is Nicola Tesla. He described it as ‘tele-automation’ and it 

developed to be one of the fundamental principles for today’s UAVs and smaller drones such as 

quadrotors. Its popularity became more vast in part after the presentation by Professor Vijar 

Kumar at TED and following outputs from the cutting-edge research that was being performed in 

the laboratories at the University of Pennsylvania and ETH Zurich. 

A futuristic perspective shows that drones are expected to enter into civil use in which these 

vehicles can carry passengers without an onboard human aerial supervisor/ pilot, thus, bringing 

to an end an almost 90-year old tradition of planes piloted by human beings or quadrotors 

patrolling city streets being introduced, marking a very big step forward. Considerably in police 

forces and fire services, the small size and portability of the quadrotor (small drones/ unmanned 

aerial vehicles) has become an appealing feature; to study their adoption might be feasible for 

their own aerial surveillance purposes. 

2.3 How much impact traffic offenses has on Community and Police force 

According to Allafrica.com, the Zimbabwe Broadcasting Corporation (ZBC) employed new 

strategies in tightening bolts on motorists concerning radio licenses to the Zimbabwe National 

Road Administration (ZINARA). This move, was put to effect due to the increase of motorists 

evading radio license payments. Another incident reported in 2017 was of 67 vehicles that were 

impounded by police for operating as Public service vehicles yet not being registered in terms of 

the Road Motor Transportation Act (Chapter 13:10).  

On the 3rd of January 2014, according to the Herald (press): Botswana was reported (with 

immediate effect) to have banned all imported second-hand vehicles from passing through its 

territory, a development that saw an effect on imports from Europe through Namibia. South 

Africa initiated this ban stating that cars from Asia that came through Durban Port were 

supposed to be ferried on vehicle carriers up to Beitbridge. This significantly increased the cost 

of importing a vehicle into Zimbabwe. Botswana’s Transport and Communication Ministry said 

this ban was imposed after realization that most unregistered vehicles’ road worthiness was 
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unknown, thus posing a danger to the public. It further pointed out that the imported vehicles in 

transit were often uninsured and this posed problems in the event of an accident. 

Unregistered vehicles were reported to have (up to date) been used in several crimes and there is 

no way of identifying the culprits or perpetrators. Ferrying a car by carrier through Botswana 

costs anywhere between US $1 000 and US $1 500 depending on type of vehicle 

According to the ZIMSTAT (Zimbabwe National Statistics Agency) publication on the 21st of 

April 2016: the number of motorists arrested for driving without due care increased from 2 201 

in 2010 to 37 419 in 2015 while unlicensed drivers rose to 13 800 the previous year from 819 in 

2010. Also the number of vehicles recorded for operating without insurance in 2010 was 2 678 

while in 2015 the figure rose to 28 033 cases. The number of motorists operating vehicles 

without the licensing Act increased from 4 356 in 2010 to 42 615 cases the previous year [4]. 

2.4 The Main Components Used In Implementation of The Quadrotor 

2.4.1 Microcontroller     

An Arduino board that has a single-board microcontroller is employed for the implementation of 

a quadrotor and this single Arduino board comes with simple open source hardware board 

designed around an 8-bit Atmel AVR microcontroller. Either C or C++ programming language 

serial communication interface. The IMU (an electronic device which measures and reports on 

an aircraft’s velocity, orientation, and gravitational forces using a combination of accelerometer 

and gyroscopes, sometimes also magnetometers) is interfaced with the microcontroller.  

2.4.2 Comparison and Choosing microprocessor or controller         

 Determining through comparison which type of microprocessor is ideal for a particular project 

or device in this case a quadrotor is based on the following. 

 System requirements (performing, size, power dissipation) 

 Reliability, 

 Maintainability, 

 Flexibility, 
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 Environmental constraints, 

 Software support, 

 Cost, with a manufacturer’s track record and history being vital factors to be considered 

whenever a system is to be implemented using a microprocessor which is the heart of the 

device.  

 

In general, a microprocessor is a programmable device that accepts digital data as input, 

processes it with regards to instructions stored in its memory. It is also multipurpose in nature 

and it provides results as output. It is an example of sequential digital logic, as it has internal 

memory. 

Microprocessors are classified into three classes:- 

 Microcontrollers – For control applications and embedded system with low cost and high 

speed. 

 Digital Signal Processors – For control applications (embedded systems) with relatively low 

cost and flexible I/O configuration. 

 General Purpose Processors – General purpose computers PCs and workstations that require 

high speed. 

Based on the architecture of the microprocessor we can categorize the microprocessors into five 

classes i.e. the 4 – bit, 8 – bit, 16 – bit microprocessors. S1C 60 family is the CMOS 4 – bit 

single chip microcontroller, an integration of the various kinds of peripheral circuits like RAM, 

ROM, I/O port, LCD driver, and etc. into a single chip centering on very powerful 4-bit CPU 

core. Yet, it is characterized by low voltage as well as low power consumption technologies 

Epson takes pride in it. The S1C88 family is Epson’s powerful 8 – bit core; its arrangement 

integrates a broad choice of ROM as well as RAN size, LCD drivers, serial ports and other high 

– performance peripheral circuits into a single chip design. In addition, all the devices contain 

the power – saving, low voltage technology (Epson devices most commonly known for).  

Epson’s new 16 - bit microcontroller has small size as well as low power consumption 

equivalent to an 8-bit microcontroller, even with the 16MB address space. The S1C17 family of 

original 16-bit MCUs integrate a vast variety of interfaces, giving room for connection with 

multiple sensors and a number of peripheral circuits such as an LCD controller, EPD driver and 
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driver supporting low to medium level resolutions. The S1C17 family has RISC architecture to 

achieve high-speed operation plus low power consumption. This makes it ideal for mobile 

devices. The family also includes a broad set-up of built-in Flash ROM products. Shorten design 

turnaround time is brought about by the high quality development environment as well as on-

chip ICE function. 

The S1C33 family is Epson’s original 32-bit RISC CPU [5]. The product incorporates the 

peripheral functions; rapid DMA, programmable timer, PLL, multichannel and pre-scaler. 

Constituting of fast operation and extremely low power consumption, this family matches well to 

the OA equipment such as printers and the portable equipment, such as PDAs, toys and cellular 

phones. Furthermore, as this family incorporates an A/D converter and PWM timer, when the 

middle ware, is combined to it – it can realize the digital signal processing such as voice 

processing by single chip. They also apply in Telecommunications, high-speed operations in 

robotics, intelligent control systems, automobiles and image processing.  

Where multiple programs, high-speed response and refresh rates are supposed to be run, 64-bit 

microprocessors are implemented. Also where real-time feedback is needed, it is applicable e.g. 

in computers, space crafts and Artificial intelligent systems, they work best on 64-bit software. 

Most common examples of MCU include, the Intel MCS48, 51 as well as 96 families, whereas 

the Motorola MC68HC11 family and the Zilog z8. Most of the MSCs comprise of an 8-bit word 

size (except the MCS-96 with a 16-bit word size), at least 64-bytes of R/W memory and 1KB of 

ROM. The range of I/O lines ranges between 16 - 40 lines. It is practice that each individual 

manufacturer has their own unique instruction set and register set hence microprocessors and 

microcontrollers are incompatible with each other. Intel 8051 is under 8-bit microprocessor 

family. ROM ranges from NIL to 8KB, RAM size of 128 or 256 bytes (depending on the specific 

port number) Clock frequency is rated up to 12MHz. UV light erases data and special electrical 

programmer writes new data. Architecture comprises of four bi-directional I/O ports of 8-bits 

each [6]. 

After a thorough consideration between different processors and microcontroller plus relativity, 

to our high-speed refresh rates and real-time algorithms, I decided to use Arduino UNO 

microprocessor. This board has a gyroscope as well as magnetometer sensors mounted on it so as 

to allow connection of a RF Module, GPS module and all the accessories that the board could 
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use, it also supports Bluetooth and ZigBee communication. In this project I did not mount the 

Ardu- pilot and GPS module.    

2.5 ESC (Electronic Speed Controller) 

 

(a)                                                                     (b)       

Figure 2.1: Electronic Speed Controllers 

In this thesis, an electronic speed controller (ESC) actuates the quadcopter motors. The control 

board (which is the brain and main component) controls the ESCs. The purpose of an ESC is to 

vary the speed of the electric motor, its direction and acts as dynamic brake where required to. It 

also tells the motor at a particular time at what speed (how fast) it is supposed to spin. Since the 

quadcopter has for motors, it simply means each motor will have an ESC assigned to it 

independently.  

ESCs are inexpensive and directly linked to the battery input. Some of the ESCs available have a 

built-in battery eliminator circuit, hence power can be supplied to the RR and FCB without 

having to connect them directly to the battery. Since the motors need precise rotation speed to 

achieve accurate flight, the ESCs becomes very vital. Nowadays, a built-in firmware Simonk 

comes with the ESC, which allows us to change the refresh rate of the ESC so the motors can get 

more information per second from the ESC. Therefore, it provides more control on the behavior 

of the quadrotor. [7] 

The rotor’s position must be considered initially to electronically communicate a permanent 

magnet motor. To achieve this sensor-less driving techniques or Hall effect can be used. 
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Sensored motor operations makes simpler the driving complexity though they will result in 

heavier and more costly motor as shown below Fig 3.8. 

In place of using sensors, sensor-less techniques e.g. back electro-motive force (BEMF) zero-

cross detection and field oriented control can be implemented [8][9]. Sensor-less operation is 

preferred because sensor-less motors have reduced weight, cost, and complexity. As a result this 

makes sensor-less brushless common in quadcopters. Therefore, a DC to AC 3 phase sensor-less 

motor driver is required to drive these motors. Generally these are commonly referred to as 

electronic speed controllers (ESC). ESCs overally represent an integral part of the quadcopter 

system architecture as their output controls the orientation of the quadcopter by varying the 

speed of the propellers. A motor turns by reason of the magnetic forces created by the windings 

and the magnets within the motor. For a brushless motor, the speed of rotation of the motor will 

depend on the frequency of the winding drive sequence. On a basic brushless motor, there are 

normally three, pulse width modulated (PWM) signals. To create the necessary magnetic forces 

needed to turn the rotor, two windings will be driven at a time. Changing the pulse width of the 

signals adjusts the frequency of the signals. Smaller pulse widths cause an increase in the 

frequency of a PWM signal because more pulses can be transmitted to the windings in the same 

time duration, the reverse is true for large pulse widths.   

2.6 Control Board   

In ordered to meet autonomous control objective on the quadcopter system, additional sensors 

are required such as Lidar, GPS and Sonar. Quadrotors are now beginning to be applied in 

commercial fields for surveillance and aerial videography by using GPS to sense the position of 

the vehicle. A GPS module is used to determine the actual (current) position of the quadcopter. 

The GPS module needed interfacing with the control board so as to collect data. The quadcopter 

requires a GPS module that is relatively smaller in size, fast and accurate, yet consuming as little 

power as possible and overally with easiness. The United States of America Department of 

Defense operates a GPS (which is a satellite network). This network of satellites transmits data 

concerning its current location and time. A GPS receiver passively retrieves this data from 

multiple satellites so as to estimate its position. A GPS receiver can actually determine its current 

position three dimensions by estimating the distance between more than three satellites.  
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2.7 Battery/ Power Supply   

For this project there was need for a power supply of relatively lower cost, long battery life yet 

rechargeable and that can last up to 30 minutes of flight. From a thorough research, I discovered 

that there are currently three main types of rechargeable batteries available commercially for 

radio controlled modules, namely; Nickel-cadmium (NiCad), nickel-metal hydride (NiMH), and 

lithium polymer (LiPo) batteries. I decided to use the 3.7 per cell lithium polymer batteries due 

to their low weight and high capacity. The Lipo batteries are rated according to their current and 

their current discharge is specified by this current rating for example with a battery of rating 

12C, the expected discharge is 12 times the battery’s capacity. The above mentioned quadcopter 

components were ordered from China through Ali-express, online. 

 

(a) 

 

(b) 

Figure2.2: LiPo Battery 
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2.8 Video System for Surveillance at 5.8GHz 

Many different opinions are available for the camera. One considerable option was to mount an 

IP camera to the fuselage of the quadrotor so that it can produce a high - resolution image with 

its own transmitter. Such a camera requires connection to a network; it cannot function without 

an internet connection and would not be applicable in wilderness areas/ regions. On overall the 

setback is on cost – they are expensive. 

The alternative option was to use a smart phone and having to install the IP WEBCAM android 

application and also employ a wide local area network (WLAN) to stream the video via a 

browser on the computer. This is what was employed in this project as it appeared more cost 

effective and reduced need for rigorous coding. The camera needed to be as light as possible so 

as to allow the UAV to fly unabated and be compact enough so that it will not interfere with the 

landing gear and rotors. The video system must be able to transmit the captured data over a 

suitable distance over open space with minimal loss of signal and interference. For the prototype 

design I opted for 1 000m as a suitable range, could transmit up to 5 000m.  

2.9 RF Remote Controller 

The controller is a RF type transmitter which creates the link between the user interface and the 

UAV which uses the Radio frequency protocol for transmission; this mode of communication 

uses a 2.4 GHz frequency similar to a WAN communication, they can connect to all 2.4 GHz RF 

system.  

2.10 Communication protocol to interface remote controller and computer.   

A connection must be established when creating a live interface between the computer and the 

on-board camera needed to establish a connection and also to control the quadrotor another 

communication protocol had to be evaluated, with the RF communication protocol that utilizes 

Radio Frequency. 

Radio Frequency is a specification for a suite of high level communication protocols using tiny, 

low-power omnidirectional antennas. 

A list of RF characteristics: 
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 The energy is the signal which can radiate off a conductor into space. 

 It tends to flow via routes that contain insulating material, e.g. those found is a capacitor 

(dielectric) 

 Full duplex radiating signal can be supported  

 Incorporates power saving mechanisms for all device classes 

 Various transmission options including broadcast 

 Security key generation mechanism 

 Requires specialized transmission lines so that it cannot reflect from discontinuities in the 

cable. 

The key advantages of RF are: 

 It is applicable in various medical fields: used in Diathermy instrument for surgery 

 It is used in MRI for capturing images of human body as well as in skin tightening  

 It is used in radar for object defection 

 It is used in satellite communication 

 It is used in microwave line-of-sight communication systems such as walls of buildings or 

houses based on the frequency hence used for radio and television transmission and also I n 

cellular mobile phone service 

The main disadvantages of Radio Frequency include: 

 As RF waves are available both in LOS and non-LOS regions of transmitter, it can be prone 

to intrusion by hackers and as a result crucial personal/ official data can be decoded for 

malicious motives. In order to counter for such a problem, radio frequency wave based 

transmission is (implemented with highly secured algorithms such as AES, WEP, WPA etc. 

RF signals can also be modulated either using frequency hopping or spread spectrum 

techniques to avoid this kind of eavesdropping. 

 In order to create a live video feed from the UAV; an FPV system had to be implemented as 

it works on radio frequency 5.8GHz - which is a fast transmission rate. It could handle video 

feed transmission and for the remote controller RF communication protocol theoretically 

proved to be the most efficient and was employed at a different frequency and affective in 

Zimbabwe.      
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2.11 Gyroscope, accelerometer and magnetometer sensors 

The autonomous characteristics of the rotor is basically brought about by these sensors: for 

balancing of the quadrotor in mid-air, instant feedback from sensors is needed. This as a result 

when combined together gives continuous angle, speed and height correction; through the 

implementation of the microprocessor which gives real-time algorithms that aids the data to be 

processed from the sensors’. A DSP is a part of the microprocessor which - serves to process the 

data from the sensors (row data), and then it is sent to the ESC in order to transform the 

frequency of the motors in the four parts of the quadrotor to match the specific required angular 

velocities to balance the system applying laws of centripetal forces.  

Inside are 3 sensors, one being a classic 3-axis accelerometer, which serves to detect the 

direction which would be down towards the earth (by gravity measurement) or the speed of 

acceleration of the board in 3D space. The second one is a 3-axis magnetometer, which senses 

the source of the strongest magnetic force: generally detects magnetic north. The third being a 3-

axis gyroscope, which measures spin as well as twist. The sensor has a digital (12C) interface. 

The 9 DOF sensor has SDA/ SCL pins and sew ESCs are mostly applied on electrically powered 

radio-controlled models, with variety most often used for brushless motors essentially providing 

an electrically generated three-phase electric power low voltage source of energy for the 

motors[10] 

Irrespective of the type used, the ESC interprets control information and not a mechanical 

motion like servo motor but by varying the switching rate of network of FETs’ conductive thread 

from the 3V, SDA, SCL and GND pins. These enable connection to the APM2.5 board.    
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Figure 2.3: Gyroscopic sensor 

2.12 Motors 

The design is comprised of a symmetric array of four motors, which are commonly attached with 

an ‘X’ shaped frame. The spinning direction of each motor is alternated; opposite motors spin in 

the same direction, so as to counteract the reaction torque produced by the rotors. [11] 

 

Figure 2.4: Motor Circuit 

Brushless DC electric motor (BLDC motors), also called electrically commutated motors, are 

synchronous motors that are powered by a DC electric source with the use of an integrated 

inverter/ switching power supply, which produces an AC electric signal for driving the motors. 

They regulate the amount of power/ speed of the electric RC motor. These kind have become 



19 
 

more popular with radio controlled airplanes because of their efficiency, power, longevity and 

light weight comparing with the traditional brushed motors.   

2.13 Quadcopter’s flight control mechanism 

Quadcopters can be described as small vehicles with four motors which are evenly attached to 

rotors located at the cross frame. The main aim for having a fixed pitch rotors is to control the 

motion of the vehicle. The four rotors have independent rotating speeds. Due to the presence of 

independent, pitch, roll and yaw attitude of the vehicle can be controlled easily. Pitch, roll and 

yaw attitude of the Quadcopter can be visualized from Figure 2.1.5, 2.1.6 and 2.1.7 below.  

 

Figure 2.5: Pitch direction of Quadcopter    

  

Figure 2.6: Roll direction of Quadcopter  

 

Figure 2.7: Yaw direction of Quadcopter 

 Quadcopters have four input forces and basically the thrust that is produced by the propellers 

connected to the rotor. It is this Thrust that lifts the copter using the drive from the motors. 
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2.13.1 Take-off and landing motion mechanism 

The arrows represent the rotation direction whereas the spinning rotors are represented by the 

circles. Motors labelled FRONT and REAR rotate in a clockwise direction with the use of pusher 

rotors whereas motors labelled RIGHT and LEFT rotate in a counter-clockwise direction using 

puller rotors. A thrust and torque about the center of the quad-copter is produced by each motor. 

Because of oppositely spinning directions of the motors, the overall/ net torque is ideally zero 

about the center of the quad-copter, producing zero angular acceleration: this deals away with 

one’s need for stabilization  

Take-off is the elevation from ground to hover position whilst landing position is versa of take-

off position. Take-off/ landing motions are controlled by increasing/ decreasing the speed of four 

rotors simultaneously, which means altering the vertical motion. Figure 2.1.8 and 2.1.9 

illustrated the take-off and landing motion of Quad-copter respectively. By increasing the speed 

of all the motors by the same amount of throttle - a vertical force is created; as gravitational force 

of the earth is overcome by the vertical forces, the quad-copter will begin to rise in altitude.    

 

Figure 2.8: Take-off motion 

  

Figure 2.9: Landing motion 
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2.13.2 Forward and backward motion 

Forward/ backward motion is controlled by increasing/ decreasing speed of rear/ front rotor. 

Decreasing/ increasing the rear/ front rotor speed simultaneously has an effect on the pitch angle 

of the Quadcopter. The forward and backward motions of Quadcopter are shown in Figure 2.1.10 

and 2.1.11 respectively.   

 

  

Figure 2.10:  Forward motion   

 

Figure 2.11: Backward motion 

2.13.3 Left and right motion 

For left and right motion, it can be controlled by changing the yaw angle of Quadcopter. Yaw 

angle is manipulated by increasing (decreasing) counter-clockwise rotors speed while decreasing 

(increasing) clockwise rotor speed. Figure 2.12 and 2.13 show the right and left motion of 

Quadcopter.  
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Figure 2.12: Right motion 

 

 

  

Figure 2.13: Left motion 

2.13.4 Hovering or static position 

The hovering or static position of Quadcopter is done by two pairs of rotors rotating in clockwise 

and counter-clockwise directions respectively at same speed. By two rotors rotating in clockwise 

and counter-clockwise position, the total sum of reaction torque is zero and this allows the 

Quadcopter to hover on one position.  

2.14 Advantages of Quadcopter   

Quadcopter has many advantages as compared to other aircrafts. It doesn’t necessarily require 

much space/ area to obtain elevation (lift), as compared to a fixed wing aircraft does. Thrust is 

created by the quadcopter with all four evenly distributed motors along its frame. Typically 

helicopters encounter torque issues due to its main rotor unlike quadcopters. By having counter 

balancing forces of the rotating motors allows cancelation out of torque forces caused by each 

motor causing the quadcopter to obtain self-balance. Less Kinetic energy is required per rotor for 

the same amount of thrust when put in comparison with the helicopter; this is because a 
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quadcpoter uses four rotors instead of one. Maintenance and manufacturing costs are relatively 

lower than other aircrafts due to the above factors as well as its symmetrical design.  

    2.15 PID (Proportional Integral Derivation) - Controller 

 

Figure 2.14: PID diagram 

 

In this project, a proportional- integral-derivative-controller (PID) was implemented to deal with 

system auto stabilization. A PID controller gives certainty of matching where we intend to be - 

and actual position. This is known as the set-point (SP) an the current-point (CP). For example if 

we set the SP at 220C and the CP would be 240C. The controller therefore is required to regulate 

so that CP matches the SP (i.e. will lower the temperature). This results in the PID-controller 

giving an output. PID-controller has three variables as displayed in the figure above. The main 

job the PID-controller is employed for is to look at CP and the SP therefore determining the 

output.  

The mathematical expression for a simple PID-controller is as below:  

 

Output =  kp𝑒(𝑡)  +  kI ∫ 𝑒(𝑡) ⅆ𝑡 +  kD  
𝑑

𝑑𝑡
𝑒(𝑡)                                                                             

(2.1) 

Where e = Setpoint – Input 

In the equation                   Input = CP 
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Each term should be explained individually to determine which effect they have on the end 

result. The P-term is a factor multiplied by the error, the I-term is a factor multiplied by the error 

over time and the D-term is a factor multiplied by the difference in error. In this equation, a 

variation in time is used (this was not implemented in this project since the algorithm would run 

at a specific interval. The P-term is only dependent on the error and the kp for instance given by 

10 and error as 6, the P-term would equal to 60. A high gain helps the control loop to have a fast 

response. Though a very large gain will result in oscillation around the SP, which tends out to be 

very unsuitable for flight controller. The worst scenario would be not just a small oscillation but 

also unstabilization of the whole system; a crash in simpler terms. 

The I-term sums the error over time. This means that even a small error will increase  the I-term 

pushing it towards a steady-state. If continuing wind for example, the P-term would try to move 

the CP towards its SP, it might overshoot or undershoot, either way results in oscillation. This is 

where the I-term is large, it sums the errors to match the continuous external force keeping the 

system at a steady-state.  

The D-term is proportional to the rate of change; does not favour change. This means that it will 

try to counter any change. 

This is an overall basis of the PID-controller operation, though for the context of being used in a 

flight controller some modifications might be required.  

A typical PID response curve is illustrated in Fig below: 

 

Figure 2.15: PID graph 
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Here the process variable equals the CP. The dead-time in Fig 2.1.15 will not always appear and 

will not be relevant in the context of this project. It would be as a result of delay from changing 

the output to the actual process reacting. 

 

This algorithm can be applied in auto stabilization of the quadrotor system. For instance, if there 

be a wind gust that moves the quadrotor away from its SP, the algorithm will use the CP read 

from the IMU to calculate an output, which the flight controller can use to adjust the appropriate 

motors. This is auto stabilization at any SP, meaning it can be used to perform movement of a 

quadrotor as well.     

2.16 Quad-copter mathematical modelling 

The schematic movement of Quadcopter is represented in Figure 2.16 and based on this 

schematic, the Quadcopter mathematical modeling is derived as below [12]:   

  

  

Figure 2.16: Schematic of Quadcopter 

Where,  

U1  = sum of the thrust of each motor  

Th1= thrust generated by front motor  

Th2= thrust generated by rear motor  

Th3= thrust generated by right motor  

Th4= thrust generated by left motor  

m = mass of Quadcopter  
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g = the acceleration of gravity  

l = the half length of the Quadcopter  

 x, y, z = three position  

θ, ɸ, ψ = three Euler angles representing pitch, roll, and yaw  

The dynamics formulation of Quadcopter moving from landing position to a fixed point in the 

space is given as:  

 

 

                  D = Rxyz [
CɸCѲ CɸSѲSѰ –  SɸCѰ CɸSѲCѰ +  SɸSѰ

CɸSѲ SɸSѲSѰ +  CɸCѰ  SɸSɸCѰ –  CɸSѰ
−SѲ CѲSѰ CѲCѰ

]                           (2.2) 

The D matrix is a description of the transformation Earth- fixed coordinates → body- fixed 

coordinates. 

Where,   

                                    R = matrix transformation  

                                               SѲ = Sin (θ), Sɸ = Sin (ɸ), SѰ = Sin (ψ)  

                                               CѲ= Cos (θ), Cɸ= Cos (ɸ),  CѰ= Cos (ψ)  

By applying the force and moment balance laws, the Quadcopter motion equation are given in 

Equation (2.3) till (2.5) and Pythagoras theorem is computed as Figure 2.1.11.  

  

 

 

  

    �̈�  = u1 (CosɸSinθCosψ + SinɸSin) – K1ẋ/m      (2.3)  

    𝑦 ̈ = u1 (SinɸSinθCosψ + CosɸSin) – K2ẏ/m               (2.4)  

    �̈� = u1 (CosɸCosψ) -g – K3 /m                  (2.5)  
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Where, Ki = drag coefficient (Assume zero since drag is negligible at low speed)  

 

Figure 2.17: Angle movement of Quadcopter 

 

 The angle ɸd and ψd in Figure 2.17 are determined using Equation (2.6) and (2.7) respectively.  

                                      ɸd = 𝑡𝑎𝑛−1 (
𝑦𝑑−𝑦

𝑥𝑑−𝑥
)                                                                                                                   (2.6)                                                                                                

                               ψd  = 𝑡𝑎𝑛−1 (
𝑧 𝑑−𝑧

√(𝑥𝑑−𝑥)2+(𝑦𝑑−𝑦)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )                                            (2.7)    

Quadcopters have four controller input forces U1, U2, U3, and U4 that will affect certain sides of 

the Quadcopter. U1 will affect the attitude of the Quadcopter, U2 affects the rotation in roll angle, 

U3 affects the pitch angle and U4 control the yaw angle. To control the Quadcopter movement is 

done by controlling each input variable. The equations of the forces are as below:  

 

U1 = (Th1 + Th2 + Th3 + Th4) / m  

U2 = l (-Th1-Th2+Th3+Th4) / I1                                            (2.8) 

U      U3 = l (-Th1+Th2+Th3-Th4) / I2  

                                                 

                                       U4 =1(Th1+Th2+Th3+Th4) / I3      

 

Where,  

Thi = thrust generated by four motor   



28 
 

C   = the force to moment scaling factor  

Ii     = the moment of inertia with respect to the axes 

 Then the second derivatives of each angle are:  

 �̈� = 𝑢2 − 1𝑘4�̇� ∕ 𝐼1                                 (2.9)  

 �̈� = U3– lK5 �̇�/I2                                                 (2.10)  

 �̈� = U1– lK6�̇�/I3                                                         (2.11) 

2.1.5.1 Direction Cosine Matrix 

Vector rotation around x can be described as matrix  

                                    Rx =   [
1 0 0
0 𝑐𝑜𝑠𝛷 𝑠𝑖𝑛𝛷
0 −𝑠𝑖𝑛𝛷 𝑐𝑜𝑠𝛷

]                                                                (2.12) 

And around y as 

                                    Ry =   [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

]                                                                  (2.13) 

And around axis z as  

                                   Rz =   [
𝑐𝑜𝑠𝛹 𝑠𝑖𝑛𝛹 0

−𝑠𝑖𝑛𝛹 𝑐𝑜𝑠𝛹 0
0 0 1

]                                                                  (2.14) 

The D matrix describes the transformation Earth- fixed coordinates → body-fixed coordinates. 

The first set of state equation is describing the change of position according to quadrotor’s 

attitude in its velocity measured in the body frame:  

                                                    [
ẋ
ẏ
�̇�

]    = D−1  [
𝑢
𝑣
𝑤

]                                                                   (2.15) 

2.1.5.2 Angular rates transformation 

The transformation between angular rates in Earth –fixed frame to body-fixed frame is given by 

equation [13] 
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                                                      [
𝑝
𝑞
�̇�

]    = E  [
�̇�

�̇�
�̇�

]                                                                    (2.16) 

Where                                      E =   [
1 0 −𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝛷 𝑠𝑖𝑛𝛷𝑐𝑜𝑠𝜃
0 −𝑠𝑖𝑛𝛷 𝑐𝑜𝑠𝛷𝑐𝑜𝑠𝜃

]                                               (2.17)                                                         

Then the second set of state equations describing change of attitude according to rotation in the 

body frame is 

                                                                [
�̇�

�̇�
�̇�

]    = E−1  [
𝑝
𝑞
𝑟

]                                                       (2.18) 

 

2.1.5.2 Linear acceleration 

The linear acceleration in Earth-fixed frame is described by the Newton’s Second Law 

                                                                    F = m�̇�                                                                  (2.19) 

Where m is the quadrotor’s mass which is constant and V is the Velocity vector in the body 

frame. The speeds u,v and w are measured in body-fixed coordinates and the body frame 

velocity vector can rotate and change its magnitude at the same time. This leads to total 

derivation of vector V [14] 

                                                                 F = m�̇� + ω × mV                                                   (2.20) 

                                                     [

𝐹𝑥

𝐹𝑦

𝐹𝑧

] =   𝑚 [
�̇�
�̇�
�̇�

] +   𝑚 [
𝑝
𝑞
𝑟

] ×   [
𝑢
𝑣
𝑤

]                                         (2.21) 

After expanding the cross product and reorganizing   

                                                     [

𝐹𝑥

𝐹𝑦

𝐹𝑧

]  = m[

�̇� + 𝑞𝑤 − 𝑟𝑣
�̇� + 𝑟𝑢 − 𝑝𝑤
�̇� + 𝑝𝑣 − 𝑞𝑢

]                                                     (2.22) 
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Neglecting the aerodynamic force then the eternal forces acting in the quadrotor’s body are thrust 

of the propellers T and weight force W. 

Thrust is always acting in the body z axis while the weight force is projected according to the 

attitude of the quadrotor. 

                                                    [

𝑊𝑥

𝑊𝑦

𝑊𝑧 − 𝑇
]  = m[

�̇� + 𝑞𝑤 − 𝑟𝑣
�̇� + 𝑟𝑢 − 𝑝𝑤
�̇� + 𝑝𝑣 − 𝑞𝑢

]                                            (2.23) 

The weight force is always acting in the Earth’s frame z axis. Conversionto body-fixed frame is 

done by the direction cosine matrix (2.4) 

                                                     D[
0
0

𝑚𝑔
]  _ [

0
0
𝑇

]   = m[

�̇� + 𝑞𝑤 − 𝑟𝑣
�̇� + 𝑟𝑢 − 𝑝𝑤
�̇� + 𝑝𝑣 − 𝑞𝑢

]                                 (2.24) 

After recognizing  

�̇� = 𝑟𝑣 − 𝑞𝑤 − 𝑔 sin 𝜙 

                                                           v̇ = pw − ru + g cos θ sin ϕ                                        (2.25) 

                                                           ẇ = qu − pv + g cos Φ cos θ −
T

m
 

Considering no motor dynamics the thrust of all rotors is (thrust is proportional to the square of 

the propeller’s angular rate) [15] 

T = b (𝛺1
2 + 𝛺2

2 + 𝛺3
2 + 𝛺4

2)                                                                                                     (2.26) 

Where b is a thrust coefficient and Ωi is speed of each rotor. 

This leads to another set of state equations 

�̇� = 𝑟𝑣 − 𝑞𝑤 − 𝑔 sin 𝜙 

                                                           v̇ = pw − ru + g cos θ sin ϕ                                         (2.27) 

                     ẇ = qu − pv + g cos Φ cos θ −
b

m
 (𝛺1

2 + 𝛺2
2 + 𝛺3

2 + 𝛺4
2) 
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2.1.5.3 Angular acceleration 

Application of an external torque will change the angular momentum of the quadrotor  

                                                             M= �̇�                                                                         (2.28) 

And  

                                                            M = �̇�+ω×H                                                                (2.29) 

                                                            H = I ω                                                                         (2.30) 

Where ω is the change of the attitude and I is the moment of inertia of the quadrotor. The 

quadrotor is a rigid body symmetric about its xz and yz plane, and the rotation axes coincidences 

with the principal axis, then the moment of the inertia tensor is 

                                                     I = [

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

]                                                                  (2.31) 

Then 

                                                         M = I�̇� + ω × Iω                                                              (2.32) 

After expanding  

Mx = ṗIx + qr(Iz − Iy) 

                                                           My = q̇Iy + pr(Ix − Iz)                                                 (2.33) 

Mz = ṙIz + pq(Iy − Ix) 

And because of the xz and yz symmetry 

                                                                      Ix ≈ Iy                                                                 (2.34) 

The equation can be simplified to: 

Mx = ṗIx + qr(Iz − Iy) 

                                                           My = q̇Iy + pr(Ix − Iz)                                                 (2.35) 

Mz = ṙIz 
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The external torque is produced by the thrust and drag of the propellers. Neglecting the 

propeller’s inertia and aerodynamic torques, then the external torques can be written as: 

                                                          Mx = lb(𝛺2
2 − 𝛺4

2) 

                                                           My = lb (𝛺1
2 − 𝛺3

2)                                                       (2.36) 

                                                          Mz = d(𝛺2
2 + 𝛺4

2 − 𝛺1
21𝛺3

2)                                          

Where d is the drag factor of the rotors and l is the distance of the propeller from the CG. Then 

the last set of equations of motion is   

ṗ =
lb

Ix

(Ω2
2 − Ω4

2) − qr
Iz − Iy

Ix
 

                                                      q̇ =
Ib

Iy
(Ω1

2 − Ω3
2) − p

rIx−Iz

Iy
                                                (2.37) 

                                                       ṙ =
d

Iz
(𝛺2

2 + 𝛺4
2 − 𝛺1

2 − 𝛺3
2) 

2.2 Expanding the equations of motion 

2.2.1 Gyroscopic moments of the propellers 

The previous equations of motion are simplified. They do not take into account aerodynamic and 

gyroscopic forces and moments and the motor dynamics. Here I’m going to expand the already 

derived equations of motion by the terms associated with motor dynamics and gyroscopic 

moments. 

Appending the gyroscopic moments to the moment equations leads to [16] 

                                                 Mx = ṗIx + qr(Iz−Iy) + Hx + Hz𝑞 - Hy𝑟 

                                                   My =  q̇Iy + pr(Ix−Iz) − Hy + Hx𝑟 − Hz𝑝                         (2.38) 

                                                    Mz =  ṙIz + Ḣz+Hy𝑝 − Hx𝑞 

Where Hx, Hy, Hz are total angular momentums of spinning masses with angular rates in x,y and 

z direction in the body frame. 
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                                                                Hx = ∑ Ixi ωxi
4
i=1                                                        (2.39) 

 

                                                                  Hy = ∑ Iyi ωyi

4

i=1
                                                  (2.40)  

                                                                  Hz = ∑ Izi ωzi
4
i=1                                                      (2.41) 

The angular rates of the rotors are presented only in the z -axis (in the body frame) and there are 

no more rotating masses than them, the equations can be simplified to 

                                                       Mx = ṗIx + qr(Iz−Iy) + Hz𝑞 

                                                      My =  q̇Ix + pr(Ix−Iz) − Hz𝑝                                           (2.42) 

Mz =    ṙIz + Hz 

The state equations for the angular rates with the propeller’s gyroscopic moments added are 

                                                        ṗ =
lb

Ix
(Ω2

2 − Ω4
2) − qr

Iz−Iy

Ix
 -  

Hz

Ix
 q 

                                                       q̇ =
Ib

Iy
(Ω1

2 − Ω3
2) − pr

Ix−Iz

Iy
 + 

Hz

Iy
p                                     (2.43) 

                                                        ṙ =
d

Iz
(𝛺2

2 + 𝛺4
2 − 𝛺1

2 − 𝛺3
2) 

 

2.2.2 Engine dynamics 

The motors propelling the quadrotor have their own dynamics. The equations of motions are the 

well -known equations of DC motor with aerodynamic damping added. 

                                                      L
di

dt
 = u – Ri - 𝑘𝑒𝜔𝑚                                                            (2.44) 

𝐽𝑟�̇�𝑚 = 𝑘𝑖𝑖 − ⅆ𝑚𝜔𝑚 − 𝑓(𝜔𝑚) 

Where  
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 L – inductance of the coil in the engine  

 i – current flowing through the engine 

 R – resistance of the coil and wirings 

  𝑘𝑒 – back EMF constact 

 𝜔𝑚 – motor angular rate 

 ⅆ𝑚 – bearing damping constant  

 𝐽𝑟 – moment of inertia of the rotor 

 𝑘𝑖 – torque constant 

 𝑓(𝜔𝑚) – nonlinear drag torque function for the given propeller 

 

2.2.3 Engine dynamics identification, introduction 

In the above chapter 2.3.2 I highlighted equations outlining a general DC electric engine. It is a 

set of two first order equation, which means the overall system is of order two. The engines used 

n the quadrotor are very small thus having small inductances and back EMF constant. This 

means that I can discard the dynamics of the current without any bigger impact of the model 

precision. This leads to only one differential equation  

                                                                     0 = u – Ri 

                                      𝐽𝑟�̇�𝑚 = 𝑘𝑖𝑖 − ⅆ𝑚𝜔𝑚 = −ⅆ𝑚𝜔𝑚 − 𝑓(𝜔𝑚) + 
ki

R
u                               (2.45) 

A general LTI (linear Time Invariant) system of first order can be described by the following 

transfer function: 

                                                           G(s) = 
k

(τs+1)
                                                                   (2.46) 

Where k stands for the DC (steady-state) gain and 𝜏 for time constant of the system. 

The differential equations of the engine are nonlinear, which means that the linear transfer 

function will only be valid in close vicinity of an arbitrary trim point. The most convenient trim 

point is the hovering quadrotor.   
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CHAPTER 3: METHODOLOGY 

3.1 Overview of the system 

The main thrust behind this research is to reduce the amount of traffic violation offenses, which 

has a massive impact on the police force as well as the society as a whole. Using UMV the 

Quadrotor has a RF communication remote module and a camera mounted to it. The police force 

personnel operating the system can monitor the traffic as well as receiving real time images of 

vehicles. A microcontroller with a code embedded into it, is mounted on this Quadrotor. This 

code plays an important role in enabling the user to control the Quadrotor by simply transmitting 

commands to the Quadrotor from the base/ station (on ground) via the RF communication 

protocol. A display interface/ screen is placed at the base/ station where the operator can view 

the images or live video feeds transmitted back from the remotely located hovering Quadrotor. 

The Quadrotor has a remote interface with which the controlling officer can remotely control its 

take-off from the ground. The serial-to-RF telemetry adapter is linked to the microcontroller 

through the microcontroller’s serial port. The user’s command or instructions are received by the 

microcontroller and hence configures the lights accordingly. This system was designed to control 

eight lights, being hard-wired to the microcontroller. These lights tend to display the status of 

communication  and the current update so that the controller can monitor communication even 

without the use of the HMI [1].  

3.2 Quadrotor Block Diagram and Explanation 

This block diagram of the Quadrotor sighting the major components in the design of the 

hardware. The main components include; microcontroller RF module, brushless motors, power 

supply, and surveillance camera. The microcontroller - embedded code is programmed in C and 

C++ programming languages. This code allows the controller to receive signals from the gyro 

sensors and the microcontroller transmits the signals to the four motors so as to either increase or 

decrease the angular velocity of the motors. The Quadrotor can stabilize itself in air by either 

increasing or decreasing the speed of rotation of the rotor blades (or moving in either direction 

from its original position). The code embedded in the microcontroller also aids establishment of 

communication link between the remote control at the base/ station and the RF module on the 

rotor. The C or C++ code running on the microcontroller allows the remote controller to transmit 
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data or commands entered by the user to the RF module inbuilt in the remote control. This 

module will then transmit this information to the remote RF receiver module through the RF 

communication protocols.  

This is the Block diagram of the Quadcopter sighting the major components in the design of the 

Hardware. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Quadcopter Block Diagram 

The microcontroller was interfaced with the RF receiver module, having the received data 

transferred to the microcontroller serially through the serial port. The code embedded in the 

microcontroller allows the microcontroller to interpret and manipulate data received by the RF 

module as well as process it with the instruction of the code. From the processed data, the 

microcontroller transmits an output signal to its output port - which is interfaced to the camera. 

Therefore, a bidirectional communication is established between the Quadrotor and the remote 
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control. The power supply unit supplies the required amount of regulated voltage to all 

components of the rotor. The ESC connects the motors to the microcontroller and regulates the 

angular velocity of each motor. 

3.3 System Description 

The minimum components I carefully selected them, and these include a control board, four 

brushless motors, four propellers, batteries (rechargeable), Quadrotor chassis, the long-range 

satellite transmitter, video camera, and remote controller. The controller can be a receiver and 

application on a computer that will be used by the rotor for its motion commands e.g. up or down 

and the video camera that will be getting the main point of concentration of this project. It will 

be a CMOS camera connected via a FPV. System at 5.8GHz frequency will be transmitting live 

feed to the station. The Quadrotor will carry the camera (wireless) and will be controlled using 

an RF transmitter. The long-range transmitter is an already purchased transmitter using a 2.4GHz 

antenna. The antenna will focus the signal from the station to the rotor and increase signal range. 

More emphasis is on weight and stability of the Quadrotor [2]. The Quadrotor is designed to be 

of lightweight as much as possible so as to maximize its flight time as based on the basic work 

law, more weight – more power required to lift the weight. The frame of the rotor is designed in 

such a way that it balances the force of the components mounted to it with the power of the 

rotors that lift the copter.  

3.4 System Software Development 

The different software components were developed using various programming languages and 

compilers due to the differences in purpose fitting.  

The microcontroller code was built in C and C++ languages on Mikro-Basic PRO for PIC, a full-

featured Basic compiler which makes Microchip PIC development ideal for all. Its environment 

has a vast range of features namely; easy-to-use IDE, very compact and efficient code, hardware 

and software libraries, software simulator, hardware debugger support, comprehensive 

documentation, COFF file generation etc. [3]. The most recent version (v4.15) supports 

Enhanced mid-range PIC16 family, sped up compilation time 3.5 times, and unveiled new 

libraries and much more. Some of the advantages of this IDE are: 
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 Free Life-time product technical support 

 Free updates of new compiler versions 

 Above 415 PIC microcontrollers are supported 

 Several hardware and software libraries 

 Numerous ready-to-use practical examples 

 User-friendly IDE with additional tools 

 Easy-to-understand documentation 

 ANSI C compiler with minor modifications 

The rest of the system software were developed using the below mentioned software tools: 

 Proteus software for schematic design and simulation 

 Visual Studio for the design of the User Interface (UI) 

 MDK Keil Uvision 5 software for the flight testing and simulation 

 Mission Planner software for calibration and testing of the gyroscope, as well as the 

calibration of the motors 

 Taulabs software for beta testing  

 3.5 Circuit Schematic Connection Simulation 

For the purposes of transmission testing, the use of a hyper-terminal was utilized to see if there 

was 

any data transmitted between an external transceiver and the control circuit developed above. 

LEDs and 

switches were included in the schematic to highlight any data transmission lines and to simulate 

any sensor 

port inputs.  

3.6 Hardware and software implementation 

3.6.1 Hardware Implementation. 

This phase of the project was conducted in multiple stages 
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3.6.2 Circuit Schematic Design 

Upon the acquisition of the requirements for the physical aspects of the project, the first step 

undertaken was the simulation of design of the intended circuit on Proteus 8.5 Suite. A control 

card for testing was developed with a microcontroller and connecting ports for interfacing with 

the sensors on the frame. The screen shot below clearly shows the test circuit with a 

microcontroller at its heart with an RF module for testing the transmitter for a new design and 

gyroscopes. This circuit was developed to replicate the intended final control circuit of the 

Transmitter. 

 

Figure 3.2 Schematic in Frit zing design 

3.6.2 Circuit Schematic Connection Simulation 

For the purposes of transmission testing, the use of a hyper-terminal was utilized to see if there 

was any data transmitted between an external transceiver and the control circuit developed 

above. LEDs and switches were included in the schematic to highlight any data transmission 

lines and to simulate any sensor port inputs. 
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3.6.3 Testing the Hardware 

 

Figure 3.4: Actual components after shipping 

 

Figure 3.5: Initial building stage 
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Figure 3.6: The second building stage 

 

Figure 3.7: The third building stage 
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Figure 3.8: The realized hardware during troubleshooting 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Introduction 

In this chapter, results of the procedures carried out in this project are presented from the 

observed outcomes, with discussions attempting to explain their deviations, if any, from the 

expected results 

4.2 Results: Expected versus Actual 

At the onset, the system was expected to be able to: 

 Stabilize in the air 

 Be controlled by the user and maneuver 

 Able to send a live video to the user PC using the FPV system. 

 

Typical Control commands and their responses were expected as follows: 

REMOTE CONTROL COMMAND ACKNOWLEDGED ERROR REPORT 

UP Copter Going UP No command given! 

DOWN Copter Going Down No command given! 

LEFT Copter Going Left No command given! 

RIGHT Copter Going Right No command given! 

 

The actual results were met on the above table as the copter could accept user input and respond 

as per the instruction sent from the RF remote controller. The PID tests that were done are shown 

in Figure4.1 below for the Yaw, Pitch and Roll. 
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Figure 4.1: PID Test Result 

The Seismometer in Fig4.2 shows the variation in the PID response to stability of the quadrotor 

system. The graph shows random spikes due to the instabilities mainly caused by external factors 

such as gusts of wind, then followed by attempts by the PID to stabilize the rotor. 

 

Figure 4.2: Seismometer Test Presentation 
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4.3 Discussion and Challenges faced 

The major challenge that was faced was of having the quadrotor to take off steadily and 

vertically as well as putting it to hovering state. During the test of the quadrotor, after it took off 

very well (vertically as expected) – due to the PID instability. One of the frame arms was 

damaged and had to be replaced. Fig below shows the damaged frame: 

 

Fig 4.3: Broken frame 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

5.1 Overall achievement/conclusion of the project 

The overall aim of the project was to realize a functional microprocessor-based quad-copter 

capable of surveillance purposes using a camera mounted on its frame and then providing instant 

video feedback to a computer implementing the RF communication protocol at different 

frequencies. This system generally achieved its purpose, although the challenge of replacing the 

broken frame which meant that the re-configuration of the entire system.  

5.2 Individual Conclusions 

At the onset of the project, a number of key objectives were set to be achieved, as clear 

yardsticks of the progress and subsequent success (or otherwise) of the project. A recap, with 

completion markers would show this progress against these objectives as follows 

 To design a quad-copter which is controlled wirelessly using a remote- this was successfully 

achieved. 

 To create a live interface between the quad copter and the computer- this was achieved 

through the FPV camera interface. 

 To design a quad-copter that demonstrates stability in the air- the main challenge with this 

objective was maintaining rotor speeds equivalent on all four rotors, a task solved through 

coupled PWM (Pulse Width Modulation). Initially, an attempt at achieving this through C 

revealed that four pulse width were required, something that was attained through the use of 

Arduino code.  

 To transmit instant telemetry information from the quadcopter to the Computer via the 

ground and air station modules at 433Mhz and this was successfully achieved. 

5.3 Recommendations 

The biggest recommendation would be for the integration of a renewable energy source to allow 

for longer flying time and active time, with solar energy being a particular area of great 

encouragement. The communication protocol can be replaced in higher budget models to allow 
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for greater ranges of influence and operation. This is an area of great potential at relatively lower 

cost than conventional methods of traffic offense monitoring. 

In addition, high quality ESCs need to be used in the future such you can avoid the ESCs burn 

mystery associated with the low quality available ESCs. 
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7. APPENDIX 

7.1 QUADROTOR CODE 

/** 

* system.c: initialize and configure all parts of the Quadcopter 

*/ 

#include <Wire.h>                      //Include the Wire.h library so we can communicate with the 

gyro. 

#include <EEPROM.h>         //Include the EEPROM.h library so we can store information onto 

the EEPROM 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//PID gain and limit settings 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

float pid_p_gain_roll = 2.00;//3.5; //4; //my base is 2.2, joop> 1.3;  //Gain setting for the roll P-

controller 

float pid_i_gain_roll = 0.04;//0.05; // 0.04;              //Gain setting for the roll I-controller 

float pid_d_gain_roll = 30;//30; //25;//35;// 18.0;    //Gain setting for the roll D-controller 

int pid_max_roll = 400;                    //Maximum output of the PID-controller (+/-) 

 

float pid_p_gain_pitch = pid_p_gain_roll;  //Gain setting for the pitch P-controller. 

float pid_i_gain_pitch = pid_i_gain_roll;  //Gain setting for the pitch I-controller. 

float pid_d_gain_pitch = pid_d_gain_roll;  //Gain setting for the pitch D-controller. 

int pid_max_pitch = pid_max_roll;          //Maximum output of the PID-controller (+/-) 

 

float pid_p_gain_yaw = 4.0;                //Gain setting for the pitch P-controller. //4.0 

float pid_i_gain_yaw = 0.02;               //Gain setting for the pitch I-controller. //0.02 
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float pid_d_gain_yaw = 0.0;                //Gain setting for the pitch D-controller. 

int pid_max_yaw = 400;                     //Maximum output of the PID-controller (+/-) 

boolean auto_level = true;                 //Auto level on (true) or off (false) 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Declaring global variables 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

byte last_channel_1, last_channel_2, last_channel_3, last_channel_4; 

byte eeprom_data[36]; 

byte highByte, lowByte; 

int receiver_input_channel_1, receiver_input_channel_2, receiver_input_channel_3, 

receiver_input_channel_4; 

int counter_channel_1, counter_channel_2, counter_channel_3, counter_channel_4, 

loop_counter; 

int esc_1, esc_2, esc_3, esc_4; 

int throttle, battery_voltage; 

int cal_int, start, gyro_address; 

int receiver_input[5]; 

int temperature; 

int acc_axis[4], gyro_axis[4]; 

float roll_level_adjust, pitch_level_adjust; 

 

long acc_x, acc_y, acc_z, acc_total_vector; 
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unsigned long timer_channel_1, timer_channel_2, timer_channel_3, timer_channel_4, esc_timer, 

esc_loop_timer; 

unsigned long timer_1, timer_2, timer_3, timer_4, current_time; 

unsigned long loop_timer; 

double gyro_pitch, gyro_roll, gyro_yaw; 

double gyro_axis_cal[4]; 

float pid_error_temp; 

float pid_i_mem_roll, pid_roll_setpoint, gyro_roll_input, pid_output_roll, pid_last_roll_d_error; 

float pid_i_mem_pitch, pid_pitch_setpoint, gyro_pitch_input, pid_output_pitch, 

pid_last_pitch_d_error; 

float pid_i_mem_yaw, pid_yaw_setpoint, gyro_yaw_input, pid_output_yaw, 

pid_last_yaw_d_error; 

float angle_roll_acc, angle_pitch_acc, angle_pitch, angle_roll; 

boolean gyro_angles_set; 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Setup routine 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

void setup() 

{ 

//  Serial.begin(57600);                   //Copy the EEPROM data for fast access data. 

  for(start = 0; start <= 35; start++)eeprom_data[start] = EEPROM.read(start); 

  start = 0;                                                        //Set start back to zero. gyro_address = 

eeprom_data[32];                                              

                                                               //Store the gyro address in the variable. 



54 
 

Wire.begin();                                        //Start the I2C as master. 

TWBR = 12;                                         //Set the I2C clock speed to 400kHz. 

//Arduino (Atmega) pins default to inputs, so they don't need to be explicitly declared as inputs. 

DDRD |= B11110000;                         //Configure digital poort 4, 5, 6 and 7 as output. 

DDRB |= B00110000;                        //Configure digital poort 12 and 13 as output. 

                                                           //Use the led on the Arduino for startup indication. 

  digitalWrite(12,HIGH);                  //Turn on the warning led. 

 //Check the EEPROM signature to make sure that the setup program is executed. 

while(eeprom_data[33] != 'J' || eeprom_data[34] != 'M' || eeprom_data[35] != 'B')delay(10); 

 //The flight controller needs the MPU-6050 with gyro and accelerometer 

 //If setup is completed without MPU-6050 stop the flight controller program   

  if(eeprom_data[31] == 2 || eeprom_data[31] == 3)delay(10); 

set_gyro_registers();                                                //Set the specific gyro registers. 

for (cal_int = 0; cal_int < 1250 ; cal_int ++){                   //Wait 5 seconds before continuing. 

 PORTD |= B11110000;                                                     //Set digital poort 4, 5, 6 and 7 high. 

 delayMicroseconds(1000);                                                //Wait 1000us. 

 PORTD &= B00001111;                                                  //Set digital poort 4, 5, 6 and 7 low. 

 delayMicroseconds(3000);                                                //Wait 3000us. 

  } 

 

//Let's take multiple gyro data samples so we can determine the average gyro offset (calibration). 

for (cal_int = 0; cal_int < 2000 ; cal_int ++){                       //Take 2000 readings for calibration. 
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if(cal_int % 15 == 0)digitalWrite(12, !digitalRead(12)); //Change the led status to indicate 

calibration. 

gyro_signalen();                                                                    //Read the gyro output. 

gyro_axis_cal[1] += gyro_axis[1];                                       //Ad roll value to gyro_roll_cal. 

gyro_axis_cal[2] += gyro_axis[2];                                       //Ad pitch value to gyro_pitch_cal. 

gyro_axis_cal[3] += gyro_axis[3];                                       //Ad yaw value to gyro_yaw_cal. 

//We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while 

calibrating the gyro. 

PORTD |= B11110000;                                               //Set digital poort 4, 5, 6 and 7 high. 

delayMicroseconds(1000);                                          //Wait 1000us. 

PORTD &= B00001111;                                           //Set digital poort 4, 5, 6 and 7 low. 

delay(3);                                                                    //Wait 3 milliseconds before the next loop. 

  } //Now that we have 2000 measures, we need to devide by 2000 to get the average gyro offset. 

  gyro_axis_cal[1] /= 2000;                                                 //Divide the roll total by 2000. 

  gyro_axis_cal[2] /= 2000;                                                 //Divide the pitch total by 2000. 

  gyro_axis_cal[3] /= 2000;                                                 //Divide the yaw total by 2000. 

PCICR |= (1 << PCIE0);                                                    //Set PCIE0 to enable PCMSK0 scan. 

PCMSK0 |= (1 << PCINT0);                                                //Set PCINT0 (digital input 8) to 

trigger an interrupt on state change. 

PCMSK0 |= (1 << PCINT1);                                                  //Set PCINT1 (digital input 9)to 

trigger an interrupt on state change. 

PCMSK0 |= (1 << PCINT2);                                       //Set PCINT2 (digital input 10)to trigger an 

interrupt on state change. 
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PCMSK0 |= (1 << PCINT3);                                   //Set PCINT3 (digital input 11)to trigger an 

interrupt on state change. 

//Wait until the receiver is active and the throtle is set to the lower position. 

while(receiver_input_channel_3 < 990 || receiver_input_channel_3 > 1020 || 

receiver_input_channel_4 < 1400){ 

receiver_input_channel_3 = convert_receiver_channel(3);                 //Convert the actual receiver 

signals for throttle to the standard 1000 - 2000us 

receiver_input_channel_4 = convert_receiver_channel(4);                 //Convert the actual receiver 

signals for yaw to the standard 1000 - 2000us 

 start ++;                                                               //While waiting increment start whith every 

loop. 

//We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while 

waiting for the receiver inputs. 

PORTD |= B11110000;                                                 //Set digital poort 4, 5, 6 and 7 high. 

delayMicroseconds(1000);                                            //Wait 1000us. 

PORTD &= B00001111;                                               //Set digital poort 4, 5, 6 and 7 low. 

delay(3);                                                                         //Wait 3 milliseconds before the next loop. 

if(start == 125){                                                            //Every 125 loops (500ms). 

digitalWrite(12, !digitalRead(12));                               //Change the led status. 

start = 0;                                                                        //Start again at 0. 

    } 

  } 

  start = 0;                                                                      //Set start back to 0. 

//Load the battery voltage to the battery_voltage variable. 
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//65 is the voltage compensation for the diode. 

//12.6V equals ~5V @ Analog 0. 

//12.6V equals 1023 analogRead(0). 

//1260 / 1023 = 1.2317. 

//The variable battery_voltage holds 1050 if the battery voltage is 10.5V. 

battery_voltage = (analogRead(0) + 65) * 1.2317; 

loop_timer = micros();                                               //Set the timer for the next loop. 

                                                                                   //When everything is done, turn off the led. 

digitalWrite(12,LOW);                                           //Turn off the warning led. 

} 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Main program loop 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

void loop(){ 

//65.5 = 1 deg/sec (check the datasheet of the MPU-6050 for more information). 

gyro_roll_input = (gyro_roll_input * 0.7) + ((gyro_roll / 65.5) * 0.3);   //Gyro pid input is 

deg/sec. 

gyro_pitch_input = (gyro_pitch_input * 0.7) + ((gyro_pitch / 65.5) * 0.3);//Gyro pid input is 

deg/sec. 

gyro_yaw_input = (gyro_yaw_input * 0.7) + ((gyro_yaw / 65.5) * 0.3);      //Gyro pid input is 

deg/sec. 

//////////////////////////////////////////////////////////////////////////////////////////////////// 

//This is the added IMU code from the videos: 
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//https://youtu.be/4BoIE8YQwM8 

//https://youtu.be/j-kE0AMEWy4 

//////////////////////////////////////////////////////////////////////////////////////////////////// 

   

//Gyro angle calculations                                                      //0.0000611 = 1 / (250Hz / 65.5) 

angle_pitch += gyro_pitch * 0.0000611;                                    //Calculate the traveled pitch 

angle and add this to the angle_pitch variable. 

angle_roll += gyro_roll * 0.0000611;                                      //Calculate the traveled roll angle 

and add this to the angle_roll variable. 

 //0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians 

angle_pitch -= angle_roll * sin(gyro_yaw * 0.000001066);  //If the IMU has yawed transfer the 

roll angle to the pitch angel. 

angle_roll += angle_pitch * sin(gyro_yaw * 0.000001066);   //If the IMU has yawed transfer the 

pitch angle to the roll angel. 

//Accelerometer angle calculations 

acc_total_vector = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z));       //Calculate the total 

accelerometer vector. 

//57.296 = 1 / (3.142 / 180) The Arduino asin function is in radians 

angle_pitch_acc = asin((float)acc_y/acc_total_vector)* 57.296;            //Calculate the pitch 

angle. 

angle_roll_acc = asin((float)acc_x/acc_total_vector)* -57.296;            //Calculate the roll angle. 

//Place the MPU-6050 spirit level and note the values in the following two lines for calibration. 

angle_pitch_acc -= 0.5;                                                   //Accelerometer calibration value for 

pitch. 

angle_roll_acc -= 2;                                                    //Accelerometer calibration value for roll. 
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//  Serial.print(angle_pitch_acc); 

//  Serial.print("\t"); 

//  Serial.println(angle_roll_acc); 

angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004;            //Correct the drift of the 

gyro pitch angle with the accelerometer pitch angle. 

angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004;               //Correct the drift of the 

gyro roll angle with the accelerometer roll angle. 

pitch_level_adjust = angle_pitch * 15;                                    //Calculate the pitch angle 

correction 

roll_level_adjust = angle_roll * 15;                                      //Calculate the roll angle correction 

if(!auto_level){                                                          //If the quadcopter is not in auto-level mode 

pitch_level_adjust = 0;                                                 //Set the pitch angle correction to zero. 

roll_level_adjust = 0;                                                  //Set the roll angle correcion to zero. 

  } 

//For starting the motors: throttle low and yaw left (step 1). 

if(receiver_input_channel_3 < 1050 && receiver_input_channel_4 < 1050)start = 1; 

//When yaw stick is back in the center position start the motors (step 2). 

if(start == 1 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1450){ 

start = 2; 

angle_pitch = angle_pitch_acc;                                          //Set the gyro pitch angle equal to the 

accelerometer pitch angle when the quadcopter is started. 

angle_roll = angle_roll_acc;                                            //Set the gyro roll angle equal to the 

accelerometer roll angle when the quadcopter is started. 

gyro_angles_set = true;                                                 //Set the IMU started flag. 
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//Reset the PID controllers for a bumpless start. 

pid_i_mem_roll = 0; 

pid_last_roll_d_error = 0; 

pid_i_mem_pitch = 0; 

pid_last_pitch_d_error = 0; 

pid_i_mem_yaw = 0; 

pid_last_yaw_d_error = 0; 

  } 

//Stopping the motors: throttle low and yaw right. 

if(start == 2 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1950)start = 

0; 

//The PID set point in degrees per second is determined by the roll receiver input. 

//In the case of deviding by 3 the max roll rate is aprox 164 degrees per second ( (500-8)/3 = 

164d/s ). 

pid_roll_setpoint = 0;                          //We need a little dead band of 16us for better results. 

if(receiver_input_channel_1 > 1508)pid_roll_setpoint = receiver_input_channel_1 - 1508; 

else if(receiver_input_channel_1 < 1492)pid_roll_setpoint = receiver_input_channel_1 - 1492; 

pid_roll_setpoint -= roll_level_adjust;                                   //Subtract the angle correction from 

the standardized receiver roll input value. 

pid_roll_setpoint /= 3.0;                                                 //Divide the setpoint for the PID roll 

controller by 3 to get angles in degrees. 

//The PID set point in degrees per second is determined by the pitch receiver input. 

//In the case of deviding by 3 the max pitch rate is aprox 164 degrees per second ( (500-8)/3 = 

164d/s ). 
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pid_pitch_setpoint = 0;   //We need a little dead band of 16us for better results. 

if(receiver_input_channel_2 > 1508)pid_pitch_setpoint = receiver_input_channel_2 - 1508; 

else if(receiver_input_channel_2 < 1492)pid_pitch_setpoint = receiver_input_channel_2 - 1492; 

 

pid_pitch_setpoint -= pitch_level_adjust;                                  //Subtract the angle correction 

from the standardized receiver pitch input value. 

pid_pitch_setpoint /= 3.0;                                                 //Divide the setpoint for the PID pitch 

controller by 3 to get angles in degrees. 

//The PID set point in degrees per second is determined by the yaw receiver input. 

 //In the case of deviding by 3 the max yaw rate is aprox 164 degrees per second ( (500-8)/3 = 

164d/s ). 

pid_yaw_setpoint = 0; 

//We need a little dead band of 16us for better results. 

if(receiver_input_channel_3 > 1050){ //Do not yaw when turning off the motors. 

if(receiver_input_channel_4 > 1508)pid_yaw_setpoint = (receiver_input_channel_4 - 1508)/3.0; 

else if(receiver_input_channel_4 < 1492)pid_yaw_setpoint = (receiver_input_channel_4 - 

1492)/3.0;} 

calculate_pid();                                      //PID inputs are known. So we can calculate the pid 

output. 

//The battery voltage is needed for compensation. 

//A complementary filter is used to reduce noise. 

//0.09853 = 0.08 * 1.2317. 

battery_voltage = battery_voltage * 0.92 + (analogRead(0) + 65) * 0.09853; 

//Turn on the led if battery voltage is to low. 
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if(battery_voltage < 1000 && battery_voltage > 600)digitalWrite(12, HIGH); 

throttle = receiver_input_channel_3;                      //We need the throttle signal as a base signal. 

//throttle -= 1400;      if (start == 2)                        //The motors are started. 

  {                                                           

if (throttle > 1800) throttle = 1800;                     //We need some room to keep full control at full 

throttle. 

esc_1 = throttle - pid_output_pitch + pid_output_roll - pid_output_yaw; //Calculate the pulse for 

esc 1 (front-right - CCW) 

esc_2 = throttle + pid_output_pitch + pid_output_roll + pid_output_yaw; //Calculate the pulse 

for esc 2 (rear-right - CW) 

esc_3 = throttle + pid_output_pitch - pid_output_roll - pid_output_yaw; //Calculate the pulse for 

esc 3 (rear-left - CCW) 

esc_4 = throttle - pid_output_pitch - pid_output_roll + pid_output_yaw; //Calculate the pulse for 

esc 4 (front-left - CW) 

if (battery_voltage < 1240 && battery_voltage > 800){               //Is the battery connected? 

esc_1 += esc_1 * ((1240 - battery_voltage)/(float)3500);              //Compensate the esc-1 pulse 

for voltage drop. 

esc_2 += esc_2 * ((1240 - battery_voltage)/(float)3500);              //Compensate the esc-2 pulse 

for voltage drop. 

esc_3 += esc_3 * ((1240 - battery_voltage)/(float)3500);              //Compensate the esc-3 pulse 

for voltage drop. 

esc_4 += esc_4 * ((1240 - battery_voltage)/(float)3500);              //Compensate the esc-4 pulse 

for voltage drop.    }  

if (esc_1 < 1050) esc_1 = 1050;                                                    //Keep the motors running. 

if (esc_2 < 1050) esc_2 = 1050;                                                    //Keep the motors running. 
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if (esc_3 < 1050) esc_3 = 1050;                                                   //Keep the motors running. 

if (esc_4 < 1050) esc_4 = 1050;                                                   //Keep the motors running. 

 

if(esc_1 > 2000)esc_1 = 2000;                                           //Limit the esc-1 pulse to 2000us. 

if(esc_2 > 2000)esc_2 = 2000;                                           //Limit the esc-2 pulse to 2000us. 

if(esc_3 > 2000)esc_3 = 2000;                                           //Limit the esc-3 pulse to 2000us. 

if(esc_4 > 2000)esc_4 = 2000;                                           //Limit the esc-4 pulse to 2000us.   

  } 

else{ 

esc_1 = 1000;                                                           //If start is not 2 keep a 1000us pulse for ess-

1. 

esc_2 = 1000;                                                           //If start is not 2 keep a 1000us pulse for ess-

2. 

esc_3 = 1000;                                                           //If start is not 2 keep a 1000us pulse for ess-

3. 

esc_4 = 1000;                                                           //If start is not 2 keep a 1000us pulse for ess-

4. 

} 

//////////////////////////////////////////////////////////////////////////////////////////////////// 

//Creating the pulses for the ESC's is explained in this video: 

//https://youtu.be/fqEkVcqxtU8 

 //////////////////////////////////////////////////////////////////////////////////////////////////// 

//! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

//Because of the angle calculation the loop time is getting very important. If the loop time is  
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//longer or shorter than 4000us the angle calculation is off. If you modify the code make sure  

//that the loop time is still 4000us and no longer! More information can be found on  

//the Q&A page:  

//! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

if(micros() - loop_timer > 4050)digitalWrite(12, HIGH);                   //Turn on the LED if the 

loop time exceeds 4050us. 

//All the information for controlling the motor's is available. 

//The refresh rate is 250Hz. That means the esc's need there pulse every 4ms. 

while(micros() - loop_timer < 4000);                                    //We wait until 4000us are passed. 

loop_timer = micros();                                                          //Set the timer for the next loop. 

PORTD |= B11110000;                                                       //Set digital outputs 4,5,6 and 7 high. 

timer_channel_1 = esc_1 + loop_timer;                            //Calculate the time of the faling edge of 

the esc-1 pulse. 

timer_channel_2 = esc_2 + loop_timer;                      //Calculate the time of the faling edge of the 

esc-2 pulse. 

timer_channel_3 = esc_3 + loop_timer;                       //Calculate the time of the faling edge of 

the esc-3 pulse. 

timer_channel_4 = esc_4 + loop_timer;                       //Calculate the time of the faling edge of 

the esc-4 pulse. 

//There is always 1000us of spare time. So let's do something usefull that is very time 

consuming. 

//Get the current gyro and receiver data and scale it to degrees per second for the pid 

calculations. 

gyro_signalen(); 
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while(PORTD >= 16){                                                //Stay in this loop until output 4,5,6 and 7 

are low. 

esc_loop_timer = micros();                                              //Read the current time. 

if(timer_channel_1 <= esc_loop_timer)PORTD &= B11101111;                //Set digital output 4 

to low if the time is expired. 

if(timer_channel_2 <= esc_loop_timer)PORTD &= B11011111;                //Set digital output 5 

to low if the time is expired. 

if(timer_channel_3 <= esc_loop_timer)PORTD &= B10111111;                //Set digital output 6 

to low if the time is expired. 

if(timer_channel_4 <= esc_loop_timer)PORTD &= B01111111;                //Set digital output 7 

to low if the time is expired. 

  } 

} 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//This routine is called every time input 8, 9, 10 or 11 changed state. This is used to read the 

receiver signals.  

//More information about this subroutine can be found in this video: 

//https://youtu.be/bENjl1KQbvo 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

ISR(PCINT0_vect){ 

current_time = micros(); 

//Channel 1========================================= 

if(PINB & B00000001){                                                              //Is input 8 high? 

if(last_channel_1 == 0){                                                             //Input 8 changed from 0 to 1. 
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last_channel_1 = 1;                                                                    //Remember current input state. 

timer_1 = current_time;                                                             //Set timer_1 to current_time. 

} 

  } 

else if(last_channel_1 == 1){                                                //Input 8 is not high and changed 

from 1 to 0. 

last_channel_1 = 0;                                                                //Remember current input state. 

receiver_input[1] = current_time - timer_1;                          //Channel 1 is current_time - timer_1. 

  } 

//Channel 2========================================= 

if(PINB & B00000010 ){                                                           //Is input 9 high? 

if(last_channel_2 == 0){                                                             //Input 9 changed from 0 to 1. 

last_channel_2 = 1;                                                                    //Remember current input state. 

timer_2 = current_time;                                                             //Set timer_2 to current_time. 

} 

  } 

else if(last_channel_2 == 1){                                      //Input 9 is not high and changed from 1 to 

0. 

last_channel_2 = 0;                                                     //Remember current input state. 

receiver_input[2] = current_time - timer_2;              //Channel 2 is current_time - timer_2. 

} 

//Channel 3========================================= 

if(PINB & B00000100 ){                                         //Is input 10 high? 
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if(last_channel_3 == 0){                                           //Input 10 changed from 0 to 1. 

last_channel_3 = 1;                                                   //Remember current input state. 

timer_3 = current_time;                                             //Set timer_3 to current_time. 

    } 

  } 

else if(last_channel_3 == 1){                                    //Input 10 is not high and changed from 1 to 

0. 

last_channel_3 = 0;                                                     //Remember current input state. 

receiver_input[3] = current_time - timer_3;                             //Channel 3 is current_time - 

timer_3. 

} 

//Channel 4========================================= 

if(PINB & B00001000 ){                                                    //Is input 11 high? 

if(last_channel_4 == 0){                                                     //Input 11 changed from 0 to 1. 

last_channel_4 = 1;                                                            //Remember current input state. 

timer_4 = current_time;                                                     //Set timer_4 to current_time. 

} 

  } 

else if(last_channel_4 == 1){                                    //Input 11 is not high and changed from 1 to 

0. 

last_channel_4 = 0;                                                   //Remember current input state. 

receiver_input[4] = current_time - timer_4;             //Channel 4 is current_time - timer_4. 

  } 
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} 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Subroutine for reading the gyro 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

void gyro_signalen(){ 

//Read the MPU-6050 

if(eeprom_data[31] == 1){ 

Wire.beginTransmission(gyro_address);                             //Start communication with the gyro. 

Wire.write(0x3B);                                                       //Start reading @ register 43h and auto 

increment with every read. 

Wire.endTransmission();                                                     //End the transmission. 

Wire.requestFrom(gyro_address,14);                                  //Request 14 bytes from the gyro. 

receiver_input_channel_1 = convert_receiver_channel(1);                 //Convert the actual receiver 

signals for pitch to the standard 1000 - 2000us. 

receiver_input_channel_2 = convert_receiver_channel(2);                 //Convert the actual receiver 

signals for roll to the standard 1000 - 2000us. 

receiver_input_channel_3 = convert_receiver_channel(3);                 //Convert the actual receiver 

signals for throttle to the standard 1000 - 2000us. 

receiver_input_channel_4 = convert_receiver_channel(4);             //Convert the actual receiver 

signals for yaw to the standard 1000 - 2000us. 

while(Wire.available() < 14);                                           //Wait until the 14 bytes are received. 

acc_axis[1] = Wire.read()<<8|Wire.read();               //Add the low and high byte to the acc_x 

variable. 

acc_axis[2] = Wire.read()<<8|Wire.read();                   //Add the low and high byte to the acc_y 

variable. 
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acc_axis[3] = Wire.read()<<8|Wire.read();                        //Add the low and high byte to the 

acc_z variable. 

temperature = Wire.read()<<8|Wire.read();                     //Add the low and high byte to the 

temperature variable. 

gyro_axis[1] = Wire.read()<<8|Wire.read();                            //Read high and low part of the 

angular data. 

gyro_axis[2] = Wire.read()<<8|Wire.read();                              //Read high and low part of the 

angular data. 

gyro_axis[3] = Wire.read()<<8|Wire.read();                              //Read high and low part of the 

angular data. 

  } 

if(cal_int == 2000){ 

gyro_axis[1] -= gyro_axis_cal[1];                                       //Only compensate after the 

calibration. 

gyro_axis[2] -= gyro_axis_cal[2];                                       //Only compensate after the 

calibration. 

gyro_axis[3] -= gyro_axis_cal[3];                                       //Only compensate after the 

calibration. 

  } 

gyro_roll = gyro_axis[eeprom_data[28] & 0b00000011];                      //Set gyro_roll to the 

correct axis that was stored in the EEPROM. 

if(eeprom_data[28] & 0b10000000)gyro_roll *= -1;                          //Invert gyro_roll if the MSB 

of EEPROM bit 28 is set. 

gyro_pitch = gyro_axis[eeprom_data[29] & 0b00000011];                  //Set gyro_pitch to the 

correct axis that was stored in the EEPROM. 
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if(eeprom_data[29] & 0b10000000)gyro_pitch *= -1;                       //Invert gyro_pitch if the 

MSB of EEPROM bit 29 is set. 

gyro_yaw = gyro_axis[eeprom_data[30] & 0b00000011];                   //Set gyro_yaw to the 

correct axis that was stored in the EEPROM. 

if(eeprom_data[30] & 0b10000000)gyro_yaw *= -1;                           //Invert gyro_yaw if the 

MSB of EEPROM bit 30 is set. 

acc_x = acc_axis[eeprom_data[29] & 0b00000011];                           //Set acc_x to the correct 

axis that was stored in the EEPROM. 

if(eeprom_data[29] & 0b10000000)acc_x *= -1;                              //Invert acc_x if the MSB of 

EEPROM bit 29 is set. 

acc_y = acc_axis[eeprom_data[28] & 0b00000011];                           //Set acc_y to the correct 

axis that was stored in the EEPROM. 

if(eeprom_data[28] & 0b10000000)acc_y *= -1;                              //Invert acc_y if the MSB of 

EEPROM bit 28 is set. 

acc_z = acc_axis[eeprom_data[30] & 0b00000011];                           //Set acc_z to the correct 

axis that was stored in the EEPROM. 

if(eeprom_data[30] & 0b10000000)acc_z *= -1;                              //Invert acc_z if the MSB of 

EEPROM bit 30 is set. 

} 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Subroutine for calculating pid outputs 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//The PID controllers are explained in part 5 of the YMFC-3D video session: 

//https://youtu.be/JBvnB0279-Q  

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
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void calculate_pid(){ 

//Roll calculations 

pid_error_temp = gyro_roll_input - pid_roll_setpoint; 

pid_i_mem_roll += pid_i_gain_roll * pid_error_temp; 

if(pid_i_mem_roll > pid_max_roll)pid_i_mem_roll = pid_max_roll; 

else if(pid_i_mem_roll < pid_max_roll * -1)pid_i_mem_roll = pid_max_roll * -1; 

pid_output_roll = pid_p_gain_roll * pid_error_temp + pid_i_mem_roll + pid_d_gain_roll * 

(pid_error_temp - pid_last_roll_d_error); 

if(pid_output_roll > pid_max_roll)pid_output_roll = pid_max_roll; 

else if(pid_output_roll < pid_max_roll * -1)pid_output_roll = pid_max_roll * -1; 

 

pid_last_roll_d_error = pid_error_temp; 

//Pitch calculations 

pid_error_temp = gyro_pitch_input - pid_pitch_setpoint; 

if(pid_i_mem_pitch > pid_max_pitch)pid_i_mem_pitch = pid_max_pitch; 

else if(pid_i_mem_pitch < pid_max_pitch * -1)pid_i_mem_pitch = pid_max_pitch * -1; 

pid_output_pitch = pid_p_gain_pitch * pid_error_temp + pid_i_mem_pitch + pid_d_gain_pitch 

* (pid_error_temp - pid_last_pitch_d_error); 

if(pid_output_pitch > pid_max_pitch)pid_output_pitch = pid_max_pitch; 

else if(pid_output_pitch < pid_max_pitch * -1)pid_output_pitch = pid_max_pitch * -1; 

pid_last_pitch_d_error = pid_error_temp; 

//Yaw calculations 

pid_error_temp = gyro_yaw_input - pid_yaw_setpoint; 
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if(pid_i_mem_yaw > pid_max_yaw)pid_i_mem_yaw = pid_max_yaw; 

else if(pid_i_mem_yaw < pid_max_yaw * -1)pid_i_mem_yaw = pid_max_yaw * -1; 

pid_output_yaw = pid_p_gain_yaw * pid_error_temp + pid_i_mem_yaw + pid_d_gain_yaw * 

(pid_error_temp - pid_last_yaw_d_error); 

if(pid_output_yaw > pid_max_yaw)pid_output_yaw = pid_max_yaw; 

else if(pid_output_yaw < pid_max_yaw * -1)pid_output_yaw = pid_max_yaw * -1; 

pid_last_yaw_d_error = pid_error_temp; 

} 

//This part converts the actual receiver signals to a standardized 1000 – 1500 – 2000 

microsecond value. 

//The stored data in the EEPROM is used. 

int convert_receiver_channel(byte function) 

{ 

byte channel, reverse;                                                  //First we declare some local variables 

int low, center, high, actual; 

int difference; 

 

channel = eeprom_data[function + 23] & 0b00000111;                           //What channel 

corresponds with the specific function 

if(eeprom_data[function + 23] & 0b10000000)reverse = 1;                 //Reverse channel when 

most significant bit is set 

else reverse = 0;                                                            //If the most significant is not set there is 

no reverse 
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actual = receiver_input[channel];                                          //Read the actual receiver value for 

the corresponding function 

low = (eeprom_data[channel * 2 + 15] << 8) | eeprom_data[channel * 2 + 14];  //Store the low 

value for the specific receiver input channel 

center = (eeprom_data[channel * 2 - 1] << 8) | eeprom_data[channel * 2 - 2]; //Store the center 

value for the specific receiver input channel 

high = (eeprom_data[channel * 2 + 7] << 8) | eeprom_data[channel * 2 + 6];   //Store the high 

value for the specific receiver input channel 

if(actual < center){                                                 //The actual receiver value is lower than the 

center value 

if(actual < low)actual = low;                                       //Limit the lowest value to the value that 

was detected during setup 

difference = ((long)(center - actual) * (long)500) / (center - low);     //Calculate and scale the 

actual value to a 1000 - 2000us value 

if(reverse == 1)return 1500 + difference;                                           //If the channel is reversed 

 else return 1500 - difference;                                                              //If the channel is not 

reversed 

  } 

else if(actual > center){                                                                        //The actual receiver value 

is higher than the center value 

if(actual > high)actual = high;                                            //Limit the lowest value to the value 

that was detected during setup 

difference = ((long)(actual - center) * (long)500) / (high - center);      //Calculate and scale the 

actual value to a 1000 - 2000us value 

if(reverse == 1)return 1500 - difference;                                  //If the channel is reversed 

else return 1500 + difference;                                             //If the channel is not reversed 
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  } 

else return 1500; 

} 

Drone Code MSU.c 

Displaying Drone Code MSU.c. 


