
i

NAME: ARTWELL MAMVURA

TITLE: National Health Practitioner Informatics System

YEAR: 2013

Abstract

ICT tools are continuously changing business processes while the Zimbabwe’s public health

sector still lags behind. The commercial industry has completely evolved because of e-

Commerce business models but an e-Health strategy has not yet been implemented in the health

sector. The need for a tool to track the areas in the country with critical shortages of public health

care professionals and ease manipulation of health practitioner’s data stirred the development of

the National Health Practitioner Informatics System (NHPIS). The NHPIS system is a health

informatics system that allows ease querying, updating, deleting, inserting of health

practitioners’ data. The term current system was used to refer to the existing system.

The primary purpose of this study is to document the problems of the current system, objectives

of NHPIS application, the development procedure and steps, and maintenance of the NHPIS

system. This documentation is phased in five main chapters, which include Introduction,

Planning, Analysis, Design and Implementation Phases. The introduction phase is an

introduction of the research study and a historical background of the organization. The planning

phase details the scheduling of the study and a feasibility study which was conducted to evaluate

viability of the system. From the feasibility study, the project proved to be feasible.

During the analysis phase, the researcher analyzed the weaknesses and strengths of the current or

existing system and evaluated whether to develop, improve or outsource the software. The

researcher had the relevant skills needed to develop the system. The researcher gathered user

ii

requirements using questionnaires, interviews and observations. After analysis phase, the design

phase followed, in this phase the researcher designed the database using MySQL Database

management system, input forms, menus and output forms using diagrams to illustrate the major

functionalities of the NHPIS. Security designs were done at this stage

The last phase was implementation, during this phase the researcher converted the pseudo code

into Java source code using Netbeans IDE. The researcher validated, verified and tested the

system. The system was deployed using the parallel system conversion method. System

maintenance is an ongoing process. Better versions of the NHPIS will be developed continually.

Declaration

I Mamvura Artwell do hereby declare that I am the sole author of this dissertation; I authorize the

Midlands State University to lend this dissertation to other institutions or individuals for the purpose of

scholarly research.

Signature…………………………. Date ……………………………..

iii

Approval

This dissertation entitled National Health Practitioner Informatics System by Mamvura Artwell meets the

regulations governing the award of the degree of Computer Science Honours of the Midlands State

University, and was approved for its contribution to knowledge and literary presentation.

Supervisor………………………………. Date ……………………………………..

iv

Acknowledgements

Firstly, I would like to thank the almighty God for the source of strength that he has always given me

throughout my research. I would like to express my profound acknowledgement to the following people:

The project supervisor Mr T G Rebanowako who contributed immensely throughout the entire project

development process, the management and staff at Hitrac and MoHCW for allowing me to carry out my

research activities. I would also like to extend my sincere gratitude to my friends Regis Dzumbunu, Faith

Mazuzu, Mornisher Mihloro and Simbarashe Makwangudze for their support during the research study.

Lastly, l would like to thank my father Mr Mamvura and my sisters Alice and Aleta for their love and

financial support. I could have never done it without them. I can safely say,” May God continue to bless

you”.

v

Dedication

“This dissertation is dedicated to my late mother, Irene Sithole who is my major source of inspiration. Her

loving memories always inspire me to be the best and to bring out the best in me. The greatest lesson that

she taught me is that burdens becomes light when ideas to bear them are lighter and brighter.”

vi

Table of Contents

Abstract I

Declaration II

Approval III

Acknowledgements IV

Dedication V

Table of contents VI

List of acronyms X

List of tables XI

List of figures XII

List of appendices XIV

CHAPTER ONE: INTRODUCTION 1

1.1 Introduction 1

1.2 Background information 1

1.2.1 Background of the study 1

1.2.2 Background of UZ College of Health Sciences 1

1.2.3 Background of HITRAC 2

vii

1.2.4 Organizational Structure of HITRAC 2

1.3 Problem definition 4

1.3.1 Description of the current system 4

1.3.2 Problems of the current system 4

1.4 Objectives 5

1.5 Aim of the study 5

1.6 Hypothesis 5

1.7 Justification 7

1.8 Conclusion 7

CHAPTER TWO: PLANNING PHASE 8

2.1 Introduction 8

2.2 Reasons for building the system 9

2.3 Business value 10

2.4 Feasibility study 10

2.4.1 Purpose of the feasibility study 11

2.4.2 The benefits of completing a feasibility study 11

2.4.3 Social feasibility 11

2.4.4 Technical feasibility 12

2.4.5 Economic Feasibility 14

2.4.6 Operational Feasibility 19

2.5 Risk Analysis 19

2.5.1 Technical risks 19

2.5.2 Risks related to Software Engineering Process 20

2.5.3 Tight Schedule 20

2.5.4 Risks associated with development & Testing Tools 21

2.5.5 Risks related to the developmental Environment 21

2.6 Work Plan 21

2.6.1 Project Activities 22

2.6.2 Project Time Allocation or Schedule 22

2.6.3 Work Breakdown Structure 22

2.6.4 Gantt Chart 23

2.7 Conclusion 24

CHAPTER THREE: ANALYSIS PHASE 25

viii

3.1 Introduction 25

3.2 Information gathering methodologies 26

3.2.1 Interviews 27

3.2.2 Questionnaire 29

3.2.3 Observation 30

3.3 Analysis of existing system 31

3.4 Process analysis 31

3.4.1 Activity Diagram of current system 32

3.5 Data Analysis 32

3.5.1 Context Diagram of the current system 33

3.6 Weaknesses of current system 35

3.7 Evaluation of Alternatives 35

3.7.1 Outsourcing 35

3.7.2 Improvement 36

3.7.3 In House Development 36

3.8 Requirements Analysis 37

3.8.1 Functional Requirements 37

3.8.2 Non-functional requirements 40

3.9 Conclusion 41

CHAPTER FOUR: DESIGN PHASE 42

4.1 Introduction 42

4.2 System Design 42

4.2.1 The new system 43

4.2.2 Context Diagram of the Proposed System 45

4.2.3 DFD of the new system 46

4.2.4 Logic Flow Chart of the new system 47

4.3 Architectural design 48

4.3.1 Architecture Design of the NHPIS Software 48

4.4 Physical design 51

4.5 Database design 52

4.5.1 Conceptual database design 53

4.5.2 Logical database design 56

4.5.3 Physical Database Design 62

ix

4.6 Program design 63

4.6.1 Package Diagram 63

4.6.2 Class Diagram of the new system 64

4.6.3 Sequence Diagram 66

4.7 Interface design 67

4.7.1 Menu Design 67

4.7.2 Input Design 69

4.7.3 Output User Interface 74

4.8 Security Design 75

4.8.1 Web application design issues 75

4.9 Conclusion 76

CHAPTER FIVE: IMPLEMENTATION PHASE 77

5.1 Introduction 77

5.2 Coding 78

5.2.1 Pseudo Code 78

5.3 Testing 80

5.3.1 Methods of Testing 80

5.3.2 Levels in Testing 81

5.3.5 Verification and Validation 88

5.4 Installation 91

5.4.1 Steps in software installation process 91

5.4.2 User training 92

5.4.3 System Conversion 94

5.5 Maintenance 95

5.5.1. Corrective maintenance 96

5.5.2 Adaptive maintenance 97

5.5.3 Perfective maintenance 97

5.5.4 Preventive maintenance 97

5.5.5 Managing maintenance 98

5.5.6 The system maintenance life cycle 98

5.5.7 Prioritization 99

5.5.8 Fire fighting 99

5.5.9 Standards and quality assurance 99

5.6 Conclusion 100

x

REFERENCES 101

Appendix A: User Manual 104

Appendix B: Interview Guide 117

Appendix C: Questionnaire Checklist 118

Appendix D: Observation Score Sheet 122

Appendix E: Snippet of Code 123

List of Acronyms

ANSI-SPARC The American National Standards Institute Standards Planning and

Requirements Committee

CBA Cost-Benefit Analysis

CDC Centre for Disease Control and Prevention.

CEPHI Center for Evaluation of Public Health Interventions.

CSS Cascading style sheets

DBMS Database Management System

DCM Department of Community Medicine.

DNS Directorate of Nursing Science.

GUI Graphical User Interface

HIO Health Information Officer

HITRAC Health Informatics Training and Research Advancement Centre.

HIU Health Informatics Unit.

ICT Information and Communication Technology.

JSP Java Server Pages

MEPI Minority Engineering Program of Indianapolis

MoHCW Ministry of Health and Child Welfare.

MVC Model View and Control

NHPIS National Health Practitioner Informatics System

NPV Net present value

xi

PEPFAR The United of States President's Emergency Preparedness For Aids Relief.

RDBMS Relational Database Management System

SDLC System Development Life Cycle

SQL Structured Query Language

UZCHS University of Zimbabwe College of Health Science.

List of Tables

Table 2.1 Database Server 13

Table 2.2 Client Computer Specifications 13

Table 2.3 Network Specifications 13

Table 2.4 Software specifications 14

Table 2.5 Development costs 17

Table 2.6 Operational costs 17

Table 2.7 Tangible benefits 17

Table 2.8 Cost benefit analysis 18

Table 2.9 Work Breakdown Structure 23

Table 4.1 Hardware and software specified 51

Table 4.2 Country Table 57

Table 4.3 User Table 57

Table 4.4 User_role Table 57

Table 4.5 Privilege Table 58

Table 4.6 Role Table 58

Table 4.7 Qualification Table 59

Table 4.8 Title Table 59

Table 4.9 Address Type Table 60

Table 4.10 Practitioner Table 60

Table 4.11 Person Table 61

xii

Table 5.1 HITRAC Administrators training 93

Table 5.2 Provincial Administrators 93

List of Figures

Fig 1.1 Organizational structure for HITRAC 3

Fig 2.1 Project plan Diagram 9

Fig 2.2 Waterfall diagram 23

Fig 2.3 Gantt chart 29

Fig 3.1 Activity Diagram of the current System 32

Fig 3.2 Context Diagram of current System 33

Fig 3.3 Data Flow Diagram of current System 34

Fig 3.4 Use case diagram of the current system 39

Fig 4.1 Context Diagram for the Proposed NHPIS system 45

Fig 4.2 Data flow diagram of the proposed System 46

Fig 4.3 Logical Flow chart for the proposed NHPIS 47

Fig 4.4 Three-Tier Architecture 48

Fig 4.5 N-tier 49

Fig 4.6 Java EE platform Architecture 49

Fig 4.7 Model View and Controller 50

Fig 4.8 Layered multi-tier Java EE application architecture based on MVC 50

Fig 4.9: Physical design of the proposed system 52

Fig 4.10 Entity Relationship Diagram 54

Fig 4.11 Enhanced Entity Relationship Diagram 55

Fig 4.12 ANSI-SPARC Database design 62

xiii

Fig 4.13 Package Diagram 64

Fig 4.14 Class Diagram of the proposed system 65

Fig 4.15 Sequence diagram of the proposed system 66

Fig 4.16 Main Menu Form 67

Fig 4.17 Static Data download Form 68

Fig 4.18 Data Export Form 68

Fig 4.19 Data Import Form 68

Fig 4.20 Login Form 69

Fig 4.21 Add Static Data form 69

Fig 4.22 Search Practitioner Form 69

Fig 4.23 Add or Edit Static data Form 70

Fig 4.24 Create Practitioner step 1 of 5 Form 70

Fig 4.25 Create Practitioner step 2 of 5 Form 71

Fig 4.26 Create Practitioner step 3 of 5 Form 72

Fig 4.27 Create Practitioner step 4 of 5 Form 72

Fig 4.28 Confirm Details Create Practitioner step 5 of 5 Form 73

Fig 4.29 Advanced Practitioner Search Form 73

Fig 4.30 Reports generated 75

Fig 4.31 Security Design Issues 75

Fig 5.1 Audit trail on database 87

Fig 5.2 Add Practitioner qualification 87

Fig 5.3 Checks for duplication 87

Fig 5.4 Validated Login form 89

Fig 5.5 Null Field Validation 89

Fig 5.6 National ID and Passport Number Validation 90

Fig 5.7 EC number validation 90

Fig 5.8 Parallel Conversion 95

Fig 5.9 System Maintenance Life Cycle 99

xiv

List of Appendices

Appendix A User Manual

Appendix B Interview Guide

Appendix C Questionnaire checklist

Appendix D Observation Score Sheet

Appendix E Snippet of code

xv

1

CHAPTER ONE: INTRODUCTION

1.1 Introduction

This chapter documents all the objectives and tools the researcher used to successfully develop

and implement the National Health Practitioner Informatics System (NHPIS). NHPIS system

was developed for the budget preparation division of the Ministry of Health and Child Welfare

(MoHCW) and HITRAC’s administration. The NHPIS supports the delivery of health care by

providing the information required for measuring the performance of health practitioners at each

health facility in the country.

1.2 Background information

This is the background information of the NHPIS system, the background information of the

organization and the background of the study.

1.2.1 Background of the study

Health care is a field in which accurate record keeping and communication are critical, yet the

use of computing and networking technologies lags behind as compared to other fields for

example the commercial industry where there is e-Commerce. E-health involves the use of

information and communication technology (ICT) in the health sector to store, manipulate, and

disseminate patient and practitioner data. Before the implementation of the NHPIS application

health practitioners’ information was transmitted through paper files. Health informatics or e-

Health is a new phenomenon in the health sector.

1.2.2 Background of UZ College of Health Sciences

The UZ College of Health Sciences (UZCHS) was established in 1963 under the auspices of the

University of Birmingham, U.K. The College currently offers degree programmes in Medicine,

Dentistry, Pharmacy, Nursing Science, Medical Laboratory Sciences, Rehabilitation, Radiology

and Health Education & Promotion. UZCHS is committed to the training of Health Care

Delivery personnel to meet the health needs of the people of Zimbabwe. Training is geared

2

towards primary health care with emphasis on a preventive rather than curative approach. As an

institute of higher learning, it takes academic excellence as the hallmark of its existence. UZCHS

is at Parirenyatwa Group of Hospitals’ teaching wing.

1.2.3 Background of HITRAC

HITRAC organization was established in 2000 as a health informatics unit under the Centre for

Evaluation of Public Health Interventions (CEPHI) a division of the UZCHS Department of

Community Medicine (DCM). It is a leading research centre, and health software development

organization in Zimbabwe. HITRAC is funded by the United States President’s Emergency Plan

for Aids Relief (PEPFAR) through CDC (Centre for Disease Control and Prevention) in

collaboration with Minority Engineering Program of Indianapolis (MEPI). The organization

develops the software applications in Java programming language and uses MySQL database

management system.

1.2.4 Organizational Structure of HITRAC

The department of community medicine (DCM) board directly controls HITRAC. The board is

mainly responsible for defining of the organizational strategic goals. The Advisor is responsible

for the sourcing out of funds and reports to the DCM board. The Principal Investigator reports to

the Advisor. The Principal Investigator who is also the Domain Expert is responsible for the day-

to-day operations of the organization. The project manager, finance officer and lead researcher

all report to the principal investigator. The project manager is responsible for managing the

project scope, deadlines, quality and quantity control. The finance officer is responsible for the

purchasing of office equipment, staff and project team needs. The Lead researcher is the key

personnel in projects undertaken by the organization. He or she is the one responsible for

directing the project team. The Lead researcher is responsible for outlining software

development tools and policies. The office manager reports to the project manager and assigns

drivers duty. The project team consists of systems administrator who manages the networks,

hardware and software infrastructure and the developers who writes the source code files.

Student interns reports to the developers.

3

Fig 1.1 Organizational structure for HITRAC

1.2.4.1 Mission Statement

Developing competent, self motivated and innovative staffs that are always abreast with the vast

changing information and communication technologies

1.2.4.2 Vision

HITRAC aims to be an internationally recognized centre of excellence in health informatics.

DCM Board

Advisors

Office Manager
System Administrators

Internships

Drivers

Developers

Lead Developer Finance Officer Project Manager

Principal Investigator

4

1.3 Problem definition

A problem is defined as the deviation of the existing state from the desired state, or a deviation

from a norm, standard, or status quo (Bennatan, 1995). A problem definition is the process of

identifying the perceived gap between the existing state and desired state. The researcher

thoroughly identified the right problems from the beginning as it was important for the overall

success of the project.

1.3.1 Description of the current system

The data capturers manually registers a practitioner at each station in all the provinces, the

practitioner data files are then stored in cabinets, and in some cases a deceased practitioner

continue being included in payroll. Anyone with physical access to the files can add, update,

delete or modify data and still be unaccountable to his or her actions. Each province has different

naming standards. A lot of paper work was involved when re-grading, adding practitioner

disciplinary case and appraising a practitioner.

1.3.2 Problems of the current system

The current system involves a lot of paper work and time-consuming processes. The other

problems of the current system are:

 Lack of immediate retrieval of a practitioner’s data - retrieving practitioner’s data

involves sifting through large volumes of files. The process of retrieving practitioners’

details is tiresome and cumbersome.

 Lack of prompt updating of practitioners’ details - changes in one file is manually

updated in all files. This promotes loss of data integrity

 Unintentional duplication of data – There is need for additional storage space

 Limited data sharing - A requested report requires data from several incompatible files in

separate files, and inaccurate reports are frequently prepared.

 Data insecurity – there was unauthorized access to the files containing practitioner data.

The problem definition was successfully completed and the next step was formulation of the

objectives of the system. NHPIS is a solution to the identified problems.

5

1.4 Objectives

An objective is a specific, measurable result that a system aims to achieve within a period and

with the available resources (Stewart, 1987). Objectives are basic tools that underlie all planning

and strategic activities. They serve as the basis for the creating of policies and evaluation of

performance. The development NHPIS system allows the collection of practitioner data within

the country. The data repository supports different data manipulations for national health

budgets. The main objectives of the informatics application are:

 To enable synchronization of practitioner data manipulation processes at the provincial

and national level.

 To promote accountability and responsibility on every act, event, use or modification

made to the data in the system.

 To enable flexible and accurate report generation.

 To develop a system that uniquely identifies a practitioner.

 To track and monitor continuous professional development of the health practitioners.

 To develop a system that enforces same naming standards for reporting consistency.

 To establish connectivity, functional integration and interoperability of the databases at

provincial level with the national instance.

 To enable automatic synchronization of a provincial data manipulation with the national

instance database state.

1.5 Aim of the study

To develop an innovative tool and approach for allowing capturing and manipulation of health

care professionals’ data and dissemination of such information to the right people in right time in

this electronic era.

1.6 Hypothesis

Hypothesis is a justification of the tools used for development or stating why those tools are

appropriate for development of a system. Usually for software projects, using the tools a

researcher is familiar with reduces the risk of project failure. There is no time for the researcher

6

to start learning new technologies. The listed software tools were used to develop, write the

source code, deploy and to host of the NHPIS system:

 Netbeans 7.2.1 IDE - Netbeans 7.2.1 Integrated Development Environment will be used

for writing source code and JUnit testing of the source code or software

 Maven - A build and project management tool with automated integration unit tests and

allows loose coupling and modular programming.

 Apache Tomcat Server 7.0.27 - Apache Tomcat Server is a web server for hosting Java

Web application or standalone deployment. It is open source software.

 MySQL - MySQL is one of the top databases available in the market. MySQL is a

relational database with many advanced features. MySQL is an Open Source RDBMS

and anyone can use it freely. Developers can customize the source code to suit their

requirements. It has a faster development time, can be installed easily and is operable on

different platforms including. MySQL is secure since all access passwords are stored in

an encrypted format restricting any unauthorized access to the system and MySQL clients

can access this relational database through standard TCP/IP sockets, named pipes, UNIX

sockets and many more.

 Java is a write once run many times anywhere and object oriented programming language

with fast development time, hence java programming language is suitable for

development of the NHPIS software.

 Hibernate Framework - an object relationship mapping tool for MySQL database queries

 JavaScript for client side validation and graphical user interface enhancements,

 Velocity is a front-end templating tool

 Hyper text mark-up language, Java Server Pages (JSP) for end user views i.e. Graphical

User Interface (GUI) and Cascading style sheets (CSS) is a language that is used for

display and representation manipulations on the of the NHPIS

 Spring MVC Framework for dependency injection and inversion of control,

 Spring Security for privileges and roles based login.

 Firebug for CSS manipulation

 IReport for report generation

 RestEasy Webservices and Client UI for system integration

7

1.7 Justification

The development of the practitioner data repository enhances the country’s health care

professional planning, that is the government can determine the health workforce needs within

the country and be able to strategically plan towards strengthening of the work force to better the

nation’s growing health needs. In as much as practitioners needs their patients’ demographic

data, health information and treatment history the patients also may need to query the data of

their specialists to see if they meet the government and state regulatory quality measure before

they can be treated. If the proposed NHPIS is deployed the MoHCW easily queries the ever

changing practitioner data with the country.

The rationale for the study is:

 With the NHPIS, there is support for provincial strategic planning and quarterly

monitoring.

 Ongoing feedback and follow-up to provinces on data quality

 Ongoing training and skills development (of data collectors, information officers,

managers) at national, provincial, district and hospital levels

 Can be used as an standalone application with the forms and reports

 Easy to learn and deploy

 Requires reasonably few resources to operate

 Compatible with RDBMS

 It is easy to maintain

The researcher included audit trails in the system hence any change in the database records is

traced back to the modifier or creator.

1.8 Conclusion

National Health Practitioner Informatics System is a vital component in giving the MoHCW

practitioner data or information and tools to help them with their decision-making processes. The

introduction of NHPIS improves the quality of health practitioners’ data captured at all levels.

Having completed the preliminary stage the researcher proceeded to the planning phase. The

Introduction phase was one week in duration.

8

CHAPTER TWO: PLANNING PHASE

2.1 Introduction

The planning phase highlights the preliminary analysis; it brings out the general overview of the

NHPIS. The planning phase is the second phase in the software project life cycle. Planning phase

is the time when the project team translates the initial scope from the envisioning phase into

practical plans on how to achieve it, (Davis C and Alan M, 1995). Often project planning is

ignored in favour of getting on with the work. However, project managers fail to realize the

value of a project plan in saving time, money and many risks. The planning phase was carried

out in a systematic way using the stepwise approach to project approach (Bennatan, 1995).

The planning approach involved the following:

 The establishment of project objectives and the analysis of characteristics of a project

 The establishment of an infrastructure consisting of an appropriate organization and set of

standards, methods and tools

 The identification of the products of the project and the activities needed to generate

those products

 The allocation of resources to activities and the establishment of quality controls

A project plan has five key characteristics, and these include:

 Scope: defines what the project covers.

 Resource: human and financial resources and instruments used to develop the system.

 Time: what project tasks are undertaken and when.

 Quality: the spread or deviation allowed from a desired standard.

 Risk: defines in advance, what may happen to drive the plan off course, and how to

recover from the situation.

9

The diagram below illustrates the five key characteristics of project plan

Fig 2.1 Project plan Diagram

2.2 Reasons for building the system

NHPIS system is a means by which the nation can possibly manage the exponential growth of

practitioner health data, information, and knowledge. The following factors are reasons why the

system was built:

 Administrative information used in the health sector changes on a daily basis hence the

need for a tool that allows easy and multiple data manipulations

 Health care organizations track regulations and guidelines from different data sources.

 Access to current reliable knowledge is a key determinant in the behavior and

performance of health care professionals.

 The NHPIS enables sharing of data, information, and knowledge across domains on a

right-to-know and need-to-know basis.

 There is need for a basic technological platform to ensure that the benefits of ICT diffuse

to all health care organizations.

10

2.3 Business value

According to McGraw (2004), business value refers to the success of the organization in using

information to achieve its strategic objectives. This is the part of the corporate strategy and

comprises the development and declaration of shared view of business’ direction and the benefits

of the NHPIS from a business perspective. The system is of great value to the country in the

following ways:

 Improved support for provincial strategic planning and quarterly reporting.

 Ongoing feedback and follow-up to provinces on health care professionals’ data quality

 Continuous training and skills development for users at national, provincial, district and

health care service delivery facilities.

 Increased authorized access to data hence ensuring data confidentiality and control as

well as keeping up-to-date information.

 Reduced transaction costs and time: The automation of the manual processes involved

reduces the transaction time and cost involved.

 Improved data quality and compatible formats of the data from different external sources

2.4 Feasibility study

According to Clifton D.S and Fyffe (1977), the aims of a feasibility study are to find out whether

the system is worth implementing given the existing budget and schedule. A feasibility study is

an evaluation and analysis of the proposed project, based on extensive investigation and research

to give full comfort to the decisions made. The inputs of a feasibility study are a set of business

requirements, a description of the system and an outline of how the system supports the business

processes. The results of the feasibility study should be a report that recommends whether or not

it is worth carrying on with the requirements engineering and system development process.

Carrying out a feasibility study involves information assessment, information collection and

report writing. Some examples of possible questions that might be asked include:

 How would the organization cope if the new system was not implemented?

 What are the problems of the current system and how is the new system supposed to

alleviate these problems?

http://www.projectsmart.co.uk/elements-of-a-good-feasibility-study.html

11

2.4.1 Purpose of the feasibility study

 Establishing whether the project is operationally, technically, socially and economically

feasible.

 To establish whether the benefits outweigh the costs.

 To determine if there is schedule feasibility.

 To identify the strengths and the drawbacks of the existing system.

 Gathering the requirements specifications.

2.4.2 The benefits of completing a feasibility study

 Informed decision-making - To manage stakeholder expectations about how much the

project costs and how long it takes to implement the system.

 Reduces costs - Concluding that a project is not feasible is not a bad outcome, as it avoids

wasting resources on a project that would later fail.

 It records what is known about the project: During the feasibility study, report the analyst

gathered significant amounts of valuable information on the project.

 Increases chances of the project being a success - Feasibility study identifies the hard

parts of the project. It help in identification of dependencies in the planning phase i.e.

trials that need to be done or questions that need to be answered before key decisions on

eradication design can be made. This gives more time for the analyst to address all of the

issues before the operation starts.

2.4.3 Social feasibility

Social feasibility entails how the proposed system affects the stakeholders in the organization

and whether it receives the full support of the management (Clifton D.S, Fyffe, 1977). It also

investigates whether the system is going to risk the jobs of the employees or increase the labour

turnover. Generally, the questions asked are:

 What changes will the proposed system bring?

 What organizational structures are disturbed?

 Do the existing staff members have these skills, if not; can they be trained?

12

The NHPIS system positively affects the duties of management and improved quality and flow

of information since the success of management largely depends on the disposal of information.

The successful deployment of the NHPIS promises to boost the morale of staff members and

funders. System training was conducted and the users understood how the system works. The

responses obtained from the stakeholders were:

 MoHCW: The MoHCW supported the development of the NHPIS.

 Sponsors (CDC): Ascertained to constantly fund the development of the system.

 Users (Administrator at Hitrac): The system proved to be a solution for the administrators

as a tool for consistent naming and data sets definition within the whole system

 Users (HIO): Support the development of the software; they want a system with reduced

effort processes in communication and transport.

 HITRAC management: supported the development of the system and promised to allow

their subordinates to stress test the system before it is deployed.

2.4.3.1 Social feasibility conclusion

Analysis of the responses from stakeholders shows that the application is socially feasible.

2.4.4 Technical feasibility

This is concerned with specifying equipment and software that satisfy the user requirements

(Clifton D.S, Fyffe, 1977). The technical needs of a system vary considerably, but might include:

 Facility to produce outputs in a given time.

 Response time under certain conditions.

 Ability to process a certain volume of transaction at a particular speed.

 Facility to communicate data to distant locations.

In examining technical feasibility, configuration of the system is more important than the actual

make of the hardware. The configuration should give the complete picture of the system’s

requirements, for example, how many workstations are required, how these units are to be

interconnected so that they could operate and communicate smoothly. Technical assessment of a

13

proposed system consists of evaluating the required functionality against the hardware, software

and technical skills (human resources) available.

2.4.4.1 Technical Expertise

According to McGraw and Hoglund (2004), technical feasibility answers the question as to

whether the system can be built given the apparent constraints in terms of resources and time.

The researcher of the system possesses the relevant skills required to develop the NHPIS.

2.4.4.2 Hardware and Software Specifications

For the successful implementation of the system, the following hardware and software

specifications was added.

Table 2.1 Database Server

Item Minimum Recommended Available

Hard disk drive 500GB 3T 80GB

Printer Inkjet Laser Laser

Table 2.2 Client Computer Specifications

Processor 800MHz 1.8GHz Intel P4 800 MHz

Memory 1G 2G 512MB

HDD 50 GIG 400 GIG 80 GIG

Network Cards 10/100 10/100 None

Table 2.3 Network Specifications

HUB 32 Port 32 Port 16 Port

Patch Panel 32 Port 32 port 6 port

Connecting

Cables

UTP CAT 35 Fly

leads patch codes

UTP CAT 35 Fly

leads patch codes

UTP CAT 35 Fly

leads patch codes

UPS 3u 3u 3u

14

2.4.4.3 Software Specification

Most of the software required to develop this project are open source packages that is there is no

cost of licensing incurred. To effectively implement the software product the softwares in the

table below are needed:

Table 2.4 Software specifications

Microsoft Windows/ Linux 7

Adobe PDF Reader Latest Version

Firefox Browser Latest Version

Antivirus Norton or Avira

Microsoft Excel and Word From 2003

2.4.4.4 Conclusion on Technical Feasibility

The project was technically feasible taking into account the availability and affordability of the

additional hardware, software and expertise required to develop the project. This study also

looked at the availability of the technical expertise needed for developing, supporting and

maintaining the system and it was proved that the researcher had the technical skills needed to

undertake the project.

2.4.5 Economic Feasibility

Economic analysis is the most frequently used technique for evaluating the effectiveness of a

proposed system (Clifton D.S, Fyffe, 1977). The objective of economic feasibility study was to

determine the benefits and savings expected from the NHPIS system and compare them with

costs. If benefits outweigh costs, a decision to design and implement the system is considered.

Otherwise, further justification or alternative in the proposed system has to be made if it is to

have a chance of being approved. This outgoing effort improves in accuracy at each phase of the

system life cycle.

15

2.4.5.1 Cost Benefit Analysis (CBA)

Cost-benefit analysis (CBA) is an analytical tool used to assess the benefits and costs of

regulatory proposals, (McGraw, 2004). The Costs and benefits were examined from the

management’s perspective to identify the system proposal had the highest net benefit. The

standard way of evaluating the economic benefits of any project is to carry out a Cost-Benefit

Analysis, which consists of two steps:

 Identifying and estimating all of the costs and benefits of carrying out a project - This

includes development costs of the system, the operating costs and the benefits that are

expected to accrue from the operation of the system.

 Expressing these costs and benefits in common units - Evaluating the net benefit i.e. the

difference between the total benefits and the total cost.

The analyst expressed each cost and benefit in monetary terms to establish whether the project

was feasible. The researcher used ROI to determine the economical feasibility of NHPIS.

2.4.5.2 Costs

These are costs related to the system and include both development operational costs incurred

during the development process as well as costs of running and maintaining the proposed system,

(McGraw, 2004). Most costs are relatively easy to identify and quantify in approximate

monetary terms. Costs are classified according to where they originate in the life cycle of the

project. Embarking on the project should not strain the company’s budget and should yield

benefits that can justify its costs and implementation. Costs are categorized as either

development or operational costs. Development costs: these are the costs incurred during the

development process only, are estimated at the onset of a project, and should be refined at the

end of each project phase. The development costs include:

 Human Resource Costs

 User training Costs

 Equipment and setup costs

Operational Costs: These are costs incurred during the development of the NHPIS. Operational

costs are classified either as variable or fixed.

16

 Fixed Costs - occur at regular intervals, at relatively fixed rates.

 Variable costs - occur in proportional to a usage factor. For example supplies such as that

of CDs, DVDs, and USB flash drives e.t.c.

2.4.5.3 Benefits

The benefits that come along with the introduction of the system were categorized as either

strategic or tactical benefits

 Strategic Benefits: are those benefits that help the MoHCW to perform better usually at a

lower cost. They are usually long-term benefits and are regarded mainly as intangible

since they are not clear for anyone to see.

 Tactical Benefits: these are long-term benefits realized by the top management, which

help the organization to improve usually socially or the working environment henceforth

affecting the production of the organization.

These benefits are either tangible or intangible. Tangible and Intangible benefits - according to

Jones (1998), Tangibility refers to the ease with which costs or benefits can be measured. An

outlay of cash for any specific item or activity is referred to as a tangible cost. These costs are

known and can be estimated quite accurately. Benefits are often more difficult to specify exactly

than cost. Tangible benefits such as completing jobs in fewer hours or producing error free

reports are quantifiable. Intangible benefits such as more satisfied customers or an improved

corporate image because of using new system are not easily quantified. Both tangible and

intangible costs and benefits should be taken into consideration in the evaluation process.

Some benefits will be realized by the company after implementation of the new system and these

include the following:

2.4.5.3.1 Tangible benefits of NHPIS

 Operations efficiency

 Increased automation of processes

 Reduced operations

17

2.4.5.3.2 Intangible Benefits of NHPIS

 Improved asset utilization

 Time saving

 Increased practitioner morale

Table 2.5 Development costs

Description Amount (USD)

DELL Power Edge R410 2500

HP Compaq 500B x4 2500

Total 5000

Table 2.6 Operational costs

Description Amount (USD)

System maintenance/year 2000

User training 2500

Stationary and other computer consumables 500

Total 5000

Table 2.7 Tangible benefits

Description Amount (USD)

Reduced operation costs 1000

Improved Data Quality 1000

Consistent Reports and Time saving 1000

Increased Practitioner Morale 1000

Better Health Outcomes 1000

Total 5000

18

Table 2.8 Cost benefit analysis

Cost and Benefits Estimated Value (USD) Total (USD)

Tangible Benefits 5000

Intangible benefits 7000

Total benefits 12000

Development costs 5000

Operational costs 5000

Total costs (10000)

Net Benefits 2000

2.4.5.4 Return on Investment (ROI)

According to Kendell K.E and Kendell J.E, (2002), return on investment technique is used to

compare the net profit against the investment required. ROI was used to calculate the viability of

the project. It is the widely used cost-benefit analysis technique and is calculated using the

percentage of profitability. ROI is a performance measure used to evaluate the efficiency of an

investment or to compare the efficiency of a number of different investments. To calculate ROI,

the benefit (return) of an investment is divided by the cost of the investment; the result is

expressed as a percentage or a ratio. ROI was expressed as a percentage and was calculated as

follows:

Returns on Investments (ROI) = Net Benefits X 100

 Total Costs

 = 2000 x 100%

 10000

 = 20%

2.4.5.5 Conclusion on economic feasibility

Taking into accounting the net benefits as well as the favorable return on investment (20%) the

system is economically feasible hence; the company can embark on the project.

19

2.4.6 Operational Feasibility

Operational feasibility is a measure of how well a new system solves the problems, and takes

advantage of the opportunities identified during scope definition. The operational feasibility

assessment focuses on the degree to which the proposed development projects fits in with the

existing business environment and objectives with regard to development schedule, delivery

date, corporate culture, and existing business processes

2.4.5.5 Conclusion on operational feasibility

The NHPIS system is operationally feasible, it produces consistent reports, allows automatic

synchronization of practitioners’ details. There is ease manipulation of practitioner details

2.5 Risk Analysis

Risk analysis is a technique employed to identify and assess various factors, which may

jeopardize the success of a project or achieving a goal (Bennatan, 1995). These factors can pose

some sort of threat to the project. Thus, risk analysis covers the process of scientific assessment

of such threats vulnerable to the attainment of the organizational goals. Risk analysis technique

is helpful in defining preventive measures to reduce the probability occurrence of such

threatening factors. It includes identification of various countermeasures to successfully deal

with such constraints with an objective to avoid devastating effects on the organization's

competitiveness in the trade.

2.5.1 Technical risks

A product coming out of the hands of personnel of lower skill levels shall be certainly a cause of

risk to the organization. Following checklist shall be helpful in bridging the gaps in this area.

 Deployment of personnel having best possible skills appropriate to the project

 When in a team, proper combination of various personnel with different temperament and

skill levels is important.

20

 Availability of the nominated personnel during the complete duration of the project is of

key importance. The project would be affected if the researcher who is key personnel had

left or fallen ill during system development.

The researcher has competent skills for developing a more secure web application.

2.5.2 Risks related to Software Engineering Process

A clear-cut definition of the entire process of software engineering is of paramount importance

for the success of the product. A roughly planned process results in a software product that poses

great threats to itself as well as to the organization. The following guidelines or checklist can be

helpful in identifying the software engineering related threats & planning their counter measures.

 The researcher ensured the availability of a documented process planned for the

development of the software product.

 Ensure that all the participants of the product development team (whether in-house or

third party peoples) is religiously following the documented process

 Ensure the availability of a mechanism for monitoring the activities and performance of

third party developers and testers.

 Ensure the proper documentation of outcome of the technical reviews detailing the

resources deployed to unearth what type of software bugs.

 Ensure the availability of a configuration management mechanism for ensuring adequate

consistency in design, development and testing of the product in line with the basic

requirements already defined.

2.5.3 Tight Schedule

A period of two months to implement the NHPIS was scheduled. This could have resulted in an

undesired pressure on the researcher making him produce a sub-standard product, and end-up not

implementing all the desired functionalities in an effort to meet the deadline. To avoid this risk,

the researcher remained focused on the work at hand to avoid deadline pressure. The researcher

also worked overtime to be able to deliver a quality product within the specified period. The

researcher modularized the development of the system to allow loose coupling.

21

2.5.4 Risks associated with development & Testing Tools

Different types of development and testing tools can also be a cause of concern many a times

during the SDLC. To prevent such risks the researcher used fast development languages, which

include:

 Java - This is a write once and run in any platform.

 Maven - This is both a build tool and project management tool and performs automatics

JUnit testing on each module of the system.

The researcher is familiar with Netbeans IDE.

2.5.5 Risks related to the developmental Environment

Environment provided for development of the product also plays a key role in the success of the

product. Some of the factors or situations described below can pose certain amount of risk.

 Availability of suitable testing tools compatible with the product being developed.

 Compatibility of the databases with the environment under which they are deployed.

 Compatibility or proper integration of all software tools with each other

2.6 Work Plan

A work plan is an outline of all tasks that need to be complete in order to finish an entire project.

A work plan includes management’s layout for each member in the team and the tasks that each

individual will be performing. It includes:

 A list of personnel participating in the project

 A list of all equipment and facilities to be used in the project

 A breakdown of the project into specific tasks, with indications of which tasks are

dependent upon the completion of others

 A schedule indicating when each activity or task start and its activity duration, and who

perform it; this information may be represented as an annotated bar chart

http://www.mhhe.com/mayfieldpub/tsw/grf-ttab.htm

22

2.6.1 Project Activities

Project activity is any kind of work that is focused on accomplishing a project. The less

resources (time, budget, labour) are spent to support these activities without defecting from

quality and project scope, the more effective are the project plan and management. There are two

essential tools used to manage project activities: project activity list and project activity schedule

Project activity list is an instrument that is used to describe sequence of tasks, successive

operations or steps that are necessary to complete the project.

It can be represented as a plain to do list or as a task tree where all work components are grouped

and shown in interrelated manner. Project activity reports are usually created as a task list

showing which tasks are completed; in progress, etc.This corresponds to a brief description of

activities to be performed during project implementation. The project was broken down into

work break down structures to make planning for the researcher easier. The Waterfall Model was

used in the development of the NHPIS. Project activity schedule is a type of work plan that

shows tasks and project phases with respect to their time parameters. Such a schedule can be

represented on a calendar-like project activity template with different scale of the time grid.

2.6.2 Project Time Allocation or Schedule

Project time management is important in any project. Project time allocation involves the

allocation of duration to activities or tasks of the project. The whole project was subdivided into

Waterfall phases and each step was an activity of the NHPIS system. Time was allocated to

individual activities of the project.

2.6.3 Work Breakdown Structure

A work breakdown structure in project management and systems engineering, is a deliverable

oriented decomposition of a project into smaller components. It defines and groups a project's

discrete work elements in a way that helps organize and define the total work scope of the

project.

23

Table 2.9 Work Breakdown Structure

Activity Start Date End Date Duration (Weeks)

Introduction 18/02/13 25/02/13 1

Planning 25/02/13 11/03/13 2

Analysis 04/03/13 11/03/13 1

Design 11/03/13 25/03/13 2

Maintenance 25/03/13 29/04/13 5

Documentation 18/02/13 29/04/13 10

2.6.4 Gantt Chart

A Gantt chart, commonly used in project management, is one of the most popular and useful

ways of showing activities (tasks or events) displayed against time. On the left of the chart is a

list of the activities and along the top is a suitable time scale. A bar represents each activity; the

position and length of the bar reflects the start date, duration and end date of the activity.

The Gantt chart below helped the researcher to identify:

 The activities and activity duration, that is when each activity begins and ends

 How long each activity is scheduled to last

 Where activities overlap with other activities, and by how much

 The start and end date of the whole project

Task/Week

1 2 3 4 5 6 7 8 9 10

Introduction

Planning

Analysis

Design

Maintenance and Implementation

Documentation

Fig 2.3 Gantt chart

24

2.7 Conclusion

The project was approved, individual tasks established, scheduled, a work plan laid down, and

the researcher did the analysis of the current system and all other activities. During the planning

phase, a resource allocation schedule was developed that stated the allocation of financial and

human resources to individual activities. The planning phase was two weeks in duration; the

analysis phase started in the beginning of the second week of planning phase. The design phase

started after the completion of the planning and analysis phase. The Maintenance phase started

after the completion of the design phase. At each phase, the researcher properly documented the

entire project task he was carrying out.

25

CHAPTER THREE: ANALYSIS PHASE

3.1 Introduction

According to Rajaraman (2004) systems analysis is a process of collecting factual data,

understanding the processes involved, identifying problems and recommending feasible

suggestions for improving the functioning and performance of the system. It involves studying

the business processes, gathering operational data, understand the information flow, finding out

bottlenecks and evolving solutions for overcoming the weaknesses of the system to achieve the

organizational goals. System analysis also includes subdivision of complex process involving the

entire system, identification of data store and manual processes.

Systems analysis is an iterative process that continues until a preferred and acceptable solution

emerges. There are always gaps between the user and the systems analyst. The user understands

the current system, but the analyst does not. The analyst understands the new system, but the

user does not. How well the analyst and user work together to bridge these gaps, determined the

success the new system. During the information gathering, the analyst communicated with the

users frequently to understand the current system. The researcher or systems analyst came up

with functional and non-functional requirements. Requirement analysis is discussed in several

sections of this documentation through the discussion of data-flow diagrams, data dictionary,

entity-relationship diagrams, and process description.

In the analysis phase, our objective is to:

 Determine and document how the current system works.

 Determine how the system could work better.

 Develop a logical or business model of the new system.

The major output of the systems analysis phase is a systems proposal that describes the findings

of the analysis. The researcher came up with a logical model of the new system from the analysis

stage.

26

3.2 Information gathering methodologies

According Tait and Vessey (1988), system analysis involves gathering information about the

present system. The proper use of tools for gathering information is the key for successful

analysis. The feasibility report in the systems planning phase did not contain details of the

systems requirement. Thus, a full-blown study for the requirement of the system was necessary

in order to understand the detail operations of the business. To determine system requirements,

the analyst sought information of the current system and the opportunities for improvements in

the following areas:

System Objectives

 Identify the objectives of the new system

 Evaluate these objectives

System Inputs and Outputs:

 Identify the inputs and outputs of the new system

 The origin of the inputs and the destinations of the outputs

System Functions:

 Define the functions of the new system

 Identify the components of the systems: manual procedures, user interfaces, computer

programs, files and databases

 Identify timings of input, output and processing

 Identify controls on data entry, security, and processing

The analyst used the information-gathering techniques listed below:

 Interviews

 Questionnaires

 Onsite Visits or Observation

The system analyst used the interviews, questionnaire, and observations, as information

gathering techniques to collect the required information.

27

3.2.1 Interviews

The interview is the most common method of information gathering. There are several basic

steps to the interview process:

 Preparation for the interview

 Design of interview questions

 Conduct the interview

 Document the Interview and perform a follow-up interview.

3.2.1.1 Preparation for the Interview

To plan for the interview, the systems analyst reviewed the documents from existing system. The

systems analyst examined:

 The company’s goals and objectives

 Forms, reports, and business models of the current system

 Organization chart and user roles.

Referring to the organization chart the analyst prepared a list of interviewees who would provide

various levels of information for the current system and future needs of the system. Higher levels

of management normally provide an overview of the current system and its future needs. The

lower-level users provided the detailed operations of the system. Thus, the researcher

interviewed provincial data capturers, as they were the user of the current system and an

employee of the MoHCW.

3.2.1.2 Designing Interview Questions

There are three types of interview questions and these are:

Closed-ended questions: Closed-ended questions enable analysts to control the interview and

obtain information they need. Answers to the questions require only a short answer of one or

two words (true or false, multiple choice, rating on a scale, or ranking).

28

Open-ended questions: Open-ended questions are those that leave rooms for further elaboration

by the interviewee. These questions provide additional information or problems that a user

normally does not like to talk about.

Probes: These are follow-up questions in response to one of the above questions, when the

analyst is unclear about the answer.

Refer to Appendix B

3.2.1.3 Conducting the Interview

There are certain guidelines for a successful interview. Some of them are:

 Listen very carefully to the interviewee and give opportunity to answer and ask questions.

 Take a second person to take notes, if permitted by the organization, record the interview.

 Ask questions, even if they sound “dumb”. Not asking questions may result in wrong

conclusion causing further potential problems

 Separate facts from individual user opinions. Facts are important but opinions are not.

 Do not make any premature promise on any part of the delivery of the system.

 Thank the interviewee at the end and mention that a follow-up interview may occur to

clarify questions that may arise.

3.2.1.4 Document the Interview

After the interview, the analyst organized and typed interview notes in the form of a report. The

researcher listed unclear or additional questions that arose during the interview. The report was

sent to the interviewee with a request to read, make comments, and his or her approval.

3.2.1.5 Follow-Up Interview

Follow-up interview arises due to the questions that may arise in writing the interview report and

obtaining a response of the report. Depending on the number and type of questions, the follow-

up interview can be performed in person or over the telephone or any other suitable mechanism.

29

3.2.1.5 Findings from the Interviews

From the interview, the researcher was able to find out that the users of the current system were

not comfortable with the current system. The users spent a lot of time when performing a task in

the current system. The users were ready for the new NHPIS software. Interviews are a good tool

to collect detailed information. It allows exploration and follow-up questions. Interviews build

rapport between the users and the systems analyst however, interviews are time-extensive and

expensive.

3.2.2 Questionnaire

If a project requires input from a large number of people, the questionnaire can be a valuable tool

to determine system requirements. A questionnaire is a document containing a number of

standard questions. The researcher used questionnaires to obtain information about workloads,

reports received and volumes of transactions handled

3.2.2.1 Choosing Respondents to Questionnaire

It is important to select the right group of people to send the questionnaire. The group should be

a representative sample of all users of the system. The researcher selected randomly users to give

the questionnaires.

3.2.2.2 Designing a Questionnaire

When designing a questionnaire, the most important rule is to make sure that the questions

collect the right data. Questions asked should be brief and user-friendly and there should be clear

instructions on how to answer the questions. The questions asked should relate to the

requirements of the system and should be in logical order. Some of the points to take into

consideration when designing questionnaires include:

 Use of simple wording to avoid misunderstanding

 Avoiding leading questions

 avoiding open-ending questions are difficult to tabulate

 limit questions raising concern or negative issues

Refer to Appendix C

30

3.2.2.3 Findings from the questionnaire

The researcher noted that questionnaires were most useful when used for specific purposes rather

than for more general information gathering. The researcher discovered that questionnaires can

be given to many people at a time, whereas interviews can be performed on a single person at a

time. Questionnaires are most useful for closed-end questions, although some open-ended

questions can be included for information gathering, are less expensive and less time-consuming

and can be performed on paper, over the telephone and electronically. However, questionnaires

are a rigidly structured means to obtain answers to pre-selected inquiries. From the answers of

the questionnaires, the users were ready for the new system. The current system had tiresome

processes. However, the researcher noted that when using questionnaires respondents could

leave some questions unanswered and in some cases, users gave inappropriate answers.

Questionnaires are ideal as they promote anonymous answers

3.2.3 Observation

The observation of current operating procedures of the system is another fact-finding technique.

A system can be understood better and faster through observation. The main objective of an

onsite visit is to get as close to the real system as possible. The researcher is a keen observer

knew the processes in the current system and the normal activities that occur within the system.

Refer to Appendix D

The researcher considered the Hawthorne Effect: During the observation day, people may work

more efficiently than the normal day. Operations may also run less smoothly because people

might be nervous during observation.

3.2.3 Findings from the Observation

During an onsite visit at MoHCW for observation the analyst would ask questions to obtain a

good understanding of the system operation procedure. The analyst observed all steps in the

processing cycle and noted the output from each procedural step, that is examine each file,

record, and report. The analyst successfully determined the purpose of each item on the

documents. The analyst was able to observe a complete a process of the current system, and the

31

MoHCW employee who receive reports to see whether the reports were complete, timely,

accurate, and in a useful form. The processes in the current system were time consuming and

often times the workers often left the processes hanging. The users were not comfortable with the

current system. The data capturers often made cancellations and dirty records difficult to read.

3.3 Analysis of existing system

With the current system operating, a practitioner’s data existed in two different operating

systems in different file format. There was duplication of health practitioner’s data. There was

need for integration of the operating systems capturing or recording the practitioners’ data in

order to facilitate easy national report creation. The total number of health practitioners in the

public health sectors was unrecorded.

 The data capturers manually registers a practitioner at each station in all the provinces,

the practitioner data files are then stored in cabinets, and in some cases a deceased

practitioner continue being included in payroll.

 Anyone with physical access to the files can add, update, delete or modify data and still

be unaccountable to his or her actions.

 Each province has different naming standards.

 A lot of paper work was involved when re-grading, adding practitioner disciplinary case

and appraising a practitioner.

3.4 Process analysis

A step-by-step breakdown of the phases of a process, used to convey the inputs, outputs,

and operations that take place during each phase. A process analysis can be used to improve

understanding of how the process operates and to determine potential targets for process

improvement through removing waste and increasing efficiency. An activity diagram illustrates

how the processes of existing system are executed. It starts from the time a process is initiated up

to the time a process is complete and all the involved decisions during the execution of a process.

A clear process analysis of the existing process helps the researcher understand the existing

system more.

32

3.4.1 Activity Diagram of current system

Clerk checks for eligibility

start

Practitioner Submits

details for

Registration

 NO

YES

Clerk Registers Practitioner with

Limited Restrictions

Practitioner on Disciplinary

Charges

 NO

Yes Practitioner Submits

a Written Report

Practitioner is UnRestricted

Practitioner is not

Registered

 NO

YES

Practitioner

Restricted

NO

YES

Practitioner

Register

Unchanged

END

 KEY

Start

 End

 Process

Information Flow

Decision

Continued Professional

Development

Clerk Transfers practitioner to

another Register

Report

submitted ?

Practitioner Case revisited

and unRestricted

Fig 3.1 Activity diagram of the current system

3.5 Data Analysis

The process model is a formal way of representing how a business system operates. It illustrates

the processes and activities that are performed and how data moves among them

33

3.5.1 Context Diagram of the current system

 Health Practitioner Registration System

(Separate Registration Boards)

Practitioner
Health Service

Facility

Ministry of Health Child

and Welfare

Key

 Process

 Data flow

Entity

Practitioner Profile

Practiitoner Disciplinary Details

Practitioner Registration Status Query

Responses

Reports on registered Practitioners

 Practitioner Details

 Practitioner Details

 Practitioner Application Feedbacks

Fig 3.2 Context Diagram of the current System

Query for a Report

Clerk

3.5.2 Data Flow Diagram

According to Wiegers and Karl E (2003) a data flow diagram is a pictorial representation of the

flow of information from the beginning of a transaction to the end. A transaction in system

development can be for example in the current system, the registration of a practitioner. A data

flow diagram helps the analyst understand the processes and flow of information within the

current system. Clarification of such processes aids the analyst when developing the functions or

modules of the proposed system. As each process is analyzed, loopholes of the current system

are identified and rectified.

34

Data flow diagram of the current system

1.0

Practitioner

 Registration Process

3.0

Health Facility Registration

Health Practitioner

D1 Practitioner Files

 Practitioner details

 Practitioner Registration

Confirmation

Data Capturers

Practitioner Details

 Updated Practitioner DetailsPractitioner Registration

Approval Details

 D2

 Practitioner Registers

Sorted Practitioners details

 Practitioners by Register

Public Health

Care Facility

Health care facility details

 Health Facility Details

D3 Health care Facility

Database

H
e

a
lth

 F
a

ci
lit

y
D

e
ta

ils

 D4 Registered Practitioners

Files

MoHCW

4.0

 Report Processing

 Practitioners by Register

 Application Feedbacks

Report Queries

Reports

Key

 Process

 Data Flow

 Data Store

 Entity

2.0

 Practitioner Transfers

Practitioner Data Manipulation

Fig 3.3 Data Flow Diagram of current System

35

3.6 Weaknesses of current system

 Data duplication: the same data gets repeated over and over since the data capturers find

it hard to keep track of the documents, information and transactions.

 Lack of security: Since data is stored in filing cabinets, it is freely available to anyone. If

information falls into the wrong hands it can be used against the practitioners

 Common errors: when entering data customers might have accidentally switched details

and data since it is hand written.

 Inconsistency of data: Current data is prone to unavailability for future use, since data

might get misplaced during manual filing.

 Repetition of work: if there are any changes to be made, the data have to be entered

again. At times the data capturer would forget to make the changes or forget that they had

already altered it and might redo it again hence time consuming.

 Too much paper work: since everything and every detail is written in papers and filed

 Slow retrieval of data: the information of practitioners and details were stored in different

sites and so it takes a long time to retrieve the data. It takes a long time to find the

information about a relevant person

3.7 Evaluation of Alternatives

With reference from the feasibility study that was undertaken in the planning phase, it was

concluded that the project is viable. Evaluation of the alternatives assists us to choose the best

alternative that yields optimal results. Various alternatives exist which are outlined below:

 Outsourcing.

 Improvement of the current system.

 In-House Development.

3.7.1 Outsourcing

The outsourcing alternative entails buying a software package off the shelf, or having the

software package developed by an external service provider (Software Development Houses).

From the feasibility study the company had the required technical resources needed for in house

development. The hardware and software required was available. Though outsourcing has got it

36

own merits, for example it reduces the development and implementation time; the following are

the reasons as to why HITRAC should not outsource:

 There is need for external support of hardware and software.

 There is need for specialists to install and operate.

 May not be easy to integrate with existing manual system and the package is expensive.

 Off-the-shelf software package is most likely not to meet the organization’s standards.

 The software may not leave room for customizing the system to suit the needs of the

organization.

3.7.2 Improvement

From the feasibility, study carried out improving the current system is a relatively cheaper

alternative in term of development and operational costs; it has the following demerits:

 Does not meet global standards therefore the firm may lose some of their customers.

 Time is wasted redesigning the new system as it involves frequent interviews with the

stakeholders.

 High operating costs due to extra hired labor because of redesign.

Based on the outlined it is not the best alternative.

3.7.3 In House Development

The firm can create a system that is specifically for HITRAC. The system to be developed

should be able to curb all the problems currently being faced by the current system. The

researcher has the technical expertise required for development of the system. The following

outlines the reasons why the NHPIS system was developed in-house:

 It meets the organization’s long-term goals and is less costly to implement.

 The system has room for expansion in respect with the changing technology and small

tasks can be integrated in the system thereby reducing work force.

 The system meets international technology standards and efficient execution of tasks.

37

 Maximizes utilization of resources and it is easier for users to produce reports, so

delivery of tasks becomes more efficient.

 Users of the system will assume ownership of the system since their requirements are

incorporated during system development.

 There will be continual testing of the system, as the development of the system is now in

house.

3.8 Requirements Analysis

According Hoffer, George and Valacich (2006) requirements analysis is critical to the success of

a systems or software project. The requirements should be documented, actionable, measurable,

testable, traceable, related to identified business needs or opportunities, and defined to a level of

detail sufficient for system design. Conceptually, requirements analysis includes three types of

activities:

 Eliciting requirements - the task of identifying the various types of requirements from

various sources including project documentation

 Analyzing requirements - determine whether the stated requirements are clear, complete,

consistent and unambiguous, and resolve any apparent conflicts.

 Recording requirements: requirements are documented in various forms, usually

including a summary list and may include natural-language documents, use cases, user

stories, or process specifications.

Requirements analysis can be a long process during which delicate psychological skills are

involved. New systems change the environment and relationships between people, so it is

important to identify all the stakeholders, take into account all their needs and ensure they

understand the implications of the new systems.

3.8.1 Functional Requirements

According to Mohammad, R. (2006) functional requirements explain what has to be done by

identifying the necessary task, action or activity that must be accomplished. Functional

requirements analysis was used as top-level functions for functional analysis. Functional

http://en.wikipedia.org/wiki/Requirements_elicitation
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/User_story

38

requirements define a set of features i.e. inputs, processes, outputs and stored data needed to

satisfy the system objectives. In this case, the system’s functional requirements are:

Online Registration of Practitioner: The HIO registers a practitioner and there is an automatic

update of the database at national. When a practitioner is registered, his or her details are

automatically be pushed to the national database.

Automatic downloads of static data: to ensure data consistency within the whole system, static

data e.g. the administrator at the national instance should capture Registration status. The

administrator at provincial level should then be able to download that static data.

Uploading and downloading of practitioner details: if an instance is offline from the national

server, practitioner information is downloaded into USB and CDs, forwarded to the national

instance, and uploaded.

Independent processing: Each different station or instance should operate or register

practitioners independently.

Integration of the System: The NHPIS system is integrated and allows no duplication of data.

Use of UUID: The system should incorporate use of UUID to uniquely identify a practitioner.

Report Generation: Several reports that are helpful to the Ministry of Health and Child Welfare

are produced for easy budgeting, recruiting and allocation of practitioners to health facilities and

managerial decision-making.

Use Case Diagrams

A use case is a technique for documenting the potential requirements of a new system or

software change. Each use case provides one or more scenarios that convey how the system

should interact with the end user or another system to achieve a specific business goal. Use cases

typically avoid technical jargon, preferring instead the language of the end user or domain

expert. Use cases are deceptively simple tools for describing the behavior of software or systems.

A use case contains a textual description of all of the ways, which the intended users could work

with the software or system. Use cases do not describe any internal workings of the system, nor

do they explain how that system will be implemented. They simply show the steps that a user

39

follows to perform a task. All the ways that users interact with a system can be described in this

manner.

3.8.1.1 Use Case Diagram of proposed system

National Health Practitioner Informatics System

Data Capturer

Ministry of Health

Provincial Instance Administrator

National Instance Administrator

Register

Practitioner Downloads and Manages

Practitioner Static Data e.g. Title,

Address Type, Registration Status

Records Disciplinary

Issues about the

practitioner

Records Practitioner's

Proffessional development

Generates Reports

Manages Practitioner

Static Data for Data

Consistency

KEY

Actor1

Use Case

Actor

System

Flow Control

Fig 3.4 Use case diagram of the NHPIS system

40

3.8.2 Non-functional requirements

Non-functional requirements are requirements that specify criteria that can be used to judge the

operation of a system, rather than specific behaviors. Non-functional system requirements

include:

 Availability: A system's availability, or "uptime," is the amount of time that it is

operational and available for use. This is specified because the system will be designed

with expected downtime for activities like database upgrades and backups.

 Efficiency: Specifies how well the software utilizes scarce resources: CPU cycles, disk

space, memory, bandwidth, etc.

 Flexibility: If the organization intends to increase or extend the functionality of the

software after it is deployed, that should be planned from the beginning; it influences

choices made during the design, development, testing, and deployment of the system.

 Portability: Portability specifies the ease with which the software can be installed on all

necessary platforms, and the platforms on which it is expected to run.

 Integrity: Integrity requirements define the security attributes of the system, restricting

access to features or data to certain users and protecting the privacy of data entered into

the software.

 Performance: The performance constraints specify the timing characteristics of the

software. Certain tasks or features are more time-sensitive than others are; the

nonfunctional requirements should identify those software functions that have constraints

on their performance.

 Reliability: Reliability specifies the capability of the software to maintain its performance

over time. Unreliable software fails frequently, and certain tasks are more sensitive to

failure (for example, because they cannot be restarted, or because they must be run at a

certain time).

 Reusability: Many systems are developed with the ability to leverage common

components across multiple products. Reusability indicates the extent to which software

components is designed in such a way that they can be used in applications other than the

ones for which they were initially developed.

http://en.wikipedia.org/wiki/Non-functional_requirement

41

 Robustness: A robust system is able to handle error conditions gracefully, without failure.

This includes a tolerance of invalid data, software defects, and unexpected operating

conditions.

 Scalability: Software that is scalable has the ability to handle a wide variety of system

configuration sizes. The nonfunctional requirements should specify the ways in which the

system is expected to scale up (by increasing hardware capacity, adding machines, etc.).

 Usability: Ease-of-use requirements address the factors that constitute the capacity of the

software to be understood, learned, and used by its intended users.

Generally, non-functional requirements impose constraints on the design or implementation

(such as performance engineering requirements, quality standards, or design constraints).

3.9 Conclusion

The analysis of the current system was done thoroughly and all the alternatives were considered.

It was concluded that developing a unique software package is the ideal solution for the problem

and as a result, all the functional and non-functional requirements have been identified. There is

therefore the need to move over to the design stage of the NHPIS system that is going to be

covered in the next chapter.

The researcher realized that the development of the system was easier as the user requirements

were clearly defined.

42

CHAPTER FOUR: DESIGN PHASE

4.1 Introduction

According to Conger (1994) design phase is the art of designing system components and

interrelationships between those components in the best possible way to solve some well-

specified problem. The aim of the design phase is to map the functional requirements of the

application to the software and hardware environment. The results of the design phase are

programming specifications and plans for testing, conversion, training and installation of the

system.

The design stage transformed the detailed requirements of the analysis stage into a complete,

detailed specification of the system. The analyses of this stage are performed within the

framework of the system concept, converting the functional and data requirements of the

definition stage into a complete system design, which will guide the work of the development

stage. During the design stage, a plan is build, of how the project was developed through the rest

of the SDLC process from implementation, to verification, to the time when the system was

implemented. During the design phase best practices to follow were established that is functional

and design specifications, and risk analysis was performed to identify threats and vulnerabilities

in the software.

4.2 System Design

According to Schach (1999), system design is the process of defining the architecture,

components, modules, interfaces, and data for a system to satisfy specified requirements. The

purpose of system design is to create a technical solution that satisfies the functional

requirements for the system. The functional specification produced during system requirements

analysis is transformed into a physical architecture. System components are distributed across

the physical architecture, usable interfaces are designed and prototyped and technical

specifications are created for the application researcher thus enabling him to build and test the

system.

43

The design phase consists of the following processes:

 Preparation for system design, where the existing project repositories are expanded to

accommodate the design work products, the technical environment and tools needed to

support System Design are established, and training needs of the team members involved

in system design are addressed.

 Define technical architecture, where the foundation and structure of the system are

identified in terms of system hardware, system software, and supporting tools, and the

strategy is developed for distribution of the various system components across the

architecture.

 Define system standards, where common processes, techniques, tools, and conventions

that were used throughout the project are identified in an attempt to maximize

efficiencies and introduce uniformity throughout the system.

 Create physical database, where the actual database to be used by the system is defined,

validated, and optimized to ensure the completeness, accuracy, and reliability of the data.

 Prototype system components, where various components of the solution may be

developed or demonstrated in an attempt to validate preliminary functionality, to better

illustrate and confirm the proposed solution, or to demonstrate “proof-of-concept.”

 Produce technical specifications, where the operational requirements of the system are

translated into a series of technical design specifications for all components of the

system, setting the stage for system construction.

4.2.1 The new system

In line with continued efforts to strengthen the NHPIS, posts for data capturers or Health

Information Officers (HIO) were created at provincial, district and station levels. The HIO will

be using the system to update and record every public health medical practitioners’ details. The

system should allow instant updating of the national practitioner repository as soon as the HIO or

data capturers registers or updates a practitioner’s data. In case of a station, being offline from

the national server daily-encrypted registrations transactions the system should support

exportation of the encrypted practitioner details. The exported files are transmitted in USBs or

DVDs to the administrator at HITRAC who in turn will import the encrypted practitioner details

to the database.

44

There is consistency in the data captured at various stations, districts or provinces. The

administrator at the national level captures the static data and the data capturers or HIO will only

be downloading the static data from the national repository hence consistent naming standards.

Reports for the MoHCW are generated from the system.

Login: The system authenticates and authorizes only the users in the system, hence the need of

server side validation. The system should also expire sessions if the user becomes idle and

require re-logging of the user.

Registration of Practitioner: The system allows the HIO or data capturers to capture or update

the practitioner’s profile. The use of UUID in the system allows unique identification and

eliminates duplication of the practitioners’ data. The system validates the sensitive datasets like

EC numbers, national ID numbers or passport numbers. The system does not register identical

EC numbers for different practitioners

Advanced Searching: The system allows the users to navigate throughout the practitioner

records in the database that is search by EC number, first name, and last name. The system

should also allow a user to search a practitioner by province, district, station, post, employment

status, employment category, employment type, and appointment term.

Exporting and Importing: The system allows the data capturers to export the registration

details of a practitioner and allow the administrator to import the practitioner details.

Downloading static data: To ensure consistent naming standards and consistency of

practitioners’ datasets, the system allows only the national instance administrator to add, retire

and edit static data sets, and allow the data capturers or HIO at provincial instances to download

the static data.

45

4.2.2 Context Diagram of the Proposed System

Administrator at

HITRAC

MoHCW

Practitioner Details

Practitioner Profile Details

Static Data

Reports

Report Queries

Practitioner Exported

Details

Practitioner Details Imported

Query Practitioner Data

Query Results

R
e

s
p

o
n

s
e

 o
n

 P
ra

c
ti
ti
o

n
e

r

d
a

ta
 Q

u
e

ry

R
e

s
p

o
n

s
e

 o
n

 R
e

p
o

rt

Q
u

e
ri
e

s

Report Query

Query on Practitioner Data

Imported Practitioner Data

KEY

Entity

Process

MySQL Database

Data Flow

Data

Capturers or

HIO

NATIONAL HEALTH

PRACTITIONER

INFORMATICS SYSTEM

 NHPIS SYSTEM

DATABASE

Fig 4.1 Context Diagram for the Proposed NHPIS system

46

4.2.3 DFD of the new system

According to Ulrich et al (2000), a data flow diagram (DFD) is a graphical representation of the

flow of data through an information system. It starts with an overall picture of the business and

continues by analyzing each of the functional areas of interest. It uses a top-down approach to

show all the levels of the processes of a system. It shows the system’s primary processes, data

stores, sources, and destinations linked by data flows. The components of a DFD lead directly

into physical design, with processes highlighting the programs and procedures, and data stores

suggesting data entities, files, and databases.

1.0

 Register Practitioner

3.0

Download Static Data

Data Capturer/ HIO

2.0

Add/Edit Static Data

 Practitioner details

 Practitioner

Registration Confirmation
Practitioner Details

MoHCW

4.0

Export/Import Practitioner

Details

Reports

Key

Process

Data Flow Data Store Entity

D1

Provincial

Database

Hitrac

Administrator
Static Data

D1

National

Database

Static Data

Static Data

Static Data

Export Query

Import Query

Imported

Practitioner Files
Ex

po
rte

d

Pr
ac

tit
io

ne
r F

ile
s

5.0

Generate ReportReport Query
Report Query Result

Fig 4.2 Data flow diagram of the proposed System

47

4.2.4 Logic Flow Chart of the new system

A flow chart is a graphical representation of the sequence of transactions or processes of the

proposed system. Logic flow charts are used to provide procedure manuals, which can be

followed when carrying out certain tasks. A logical flow chart provides a pictorial representation

of a series of processes in the NHPIS system. The flowchart specifies and documents the order in

which tasks are performed. Flowcharts are used for documentation and for planning.

Start

NO

YES

NO

YES

Login Details?

Valid?

User Added

Login

Download

Static Data

Report

generation

Practitioner

Pushed ?

End

Stop

Stop

Practitioner

Registration

Vetting

NO

YES

NO

NO

KEY

Initial/final state

Process-action state of an activity

Control flow of data

Decision

YES HITRAC

admin?

YES
Import

Practitioner

Files

Offline?
Practitioner Details

Automatically Added

Add/Edit

Static Data

Elligible for

Registration

Register

Practitioner

NO

YES

Fig 4.3 Logical Flow chart for the proposed NHPIS

48

4.3 Architectural design

An early stage of the system design process represents the link between specification and design

processes. It is often carried out in parallel along with specified activities. It involves identifying

major system components and their communications.

The advantages of explicit architecture are:

 System analysis: Means that analysis of whether the system can meet its non-functional

requirements is possible.

 Large-scale reuse: The architecture may be reusable across a range of systems.

The Architecture and system characteristics include:

 Performance: Localize critical operations and minimize communications. Use large rather

than fine-grain components.

 Security: Use a layered architecture with critical assets in the inner layers.

 Availability: Include redundant components and mechanisms for fault tolerance.

 Maintainability: Use fine-grain, replaceable components.

4.3.1 Architecture Design of the NHPIS Software

Two-tier client applications are easy to develop but any changes in the user interface or business

logic has to be rolled out for all clients in order to upgrade software hence the need for three-tier

architecture. The client PC needs client software such as a browser to display the presentation

content from the server. The server hosts the presentation, business and the data access logic.

Fig 4.4 Three-Tier Architecture

49

With widespread growth of internet bandwidth, it is convenient to consider web-enabling

services. As a result, the application server is no longer used for presentation layer, business

logic and data accessing. Apache Tomcat, JBoss and Glassfish are used to generate presentation

content and hence the presentation transferred to the browser on the client tier. However keeping

these tiers as isolated silos serves no useful purpose.

Fig 4.5 N-tier

The n-tier is a complex architecture. For Java EE applications, the Java EE container architecture

is suitable. The Java EE platform provides the essential system services through a container

based architecture. The container provides the runtime environment for the object oriented

application programs written in Java. It provides low-level services such as security, transaction,

life cycle management, object lookup and caching, persistence and network communication.

Fig 4.6 Java EE platform Architecture

50

The proposed NHPIS system uses the Java EE architecture with Model, View and Control

(MVC). The model manages the data of the application by applying business rules. The view is

responsible for displaying the application data and presenting the control that allows the users to

interact with the system. The controller takes of the mediation between the model and the view.

Fig 4.7 Model View and Controller

Any browser request from the user of the new NHPIS system is transferred via HTTP to a

Servlet. The Servlet container invokes EJB model components, which encapsulate business rules

and also retrieve and modify the application data. The retrieved and/or altered data can be

displayed using JSP.

Fig 4.8 Layered multi-tier Java EE application architecture based on MVC

51

4.4 Physical design

The physical design relates to the actual input and output processes of the system. This is laid

down in terms of how data is input into a system, how it is verified or authenticated, how it is

processed, and how it is displayed as output. In physical design, following requirements about

the system are decided.

 Input requirement,

 Output requirements,

 Storage requirements,

 Processing Requirements,

 System control and backup or recovery.

The physical part of systems design can generally be broken down into three sub-tasks:

 User Interface Design - how users add information to the system and with how the

system presents information back to them.

 Data Design - how the data is represented and stored within the system

 Process Design - how data moves through the system, and with how and where it is

validated, secured and/or transformed as it flows into, through and out of the system

At the end of the systems design phase, documentation describing the three sub-tasks is produced

and made available for use in the next phase.

Table 4.1: Hardware and software specified

Hardware Software

Database server (Dell Power Edge R410) Apache Tomcat Server

Client Computers (HP Compaq 500B) Mozilla Firefox 13 or Update

Router

52

Database server

Web Services

(NHPIS Webservices)

Internet

Database Queries

Gateway

USER 1

Hitrac

Administrator

Ethernet

Browser on HITRAC Server

HITRAC Server

NHPIS war file Hosted on Server

Firewall

6 U

UPS

RouterSwitch

Firewall

Key

Switch Common link Server Ethernet User Application Server Database server

6 U

UPS
Browser

Web services
Wireless Access laptop Desktop Router Internet Communication Gateway

Fig 4.9: Physical design of the proposed system

4.5 Database design

A database is a collection of interrelated data designed to meet the varied information needs of

an organization. A tool used to store information, or data. Information is something that we all

use on a daily basis for a variety of reasons. With a database, users should be able to store data in

53

an organized manner. Designing a database requires an understanding of the business functions

you want to model. A well-designed database also performs better.

Structured approach uses procedures, techniques, tools, and documentation aids to support and

facilitate the process of design. Database design methodology has three main phases:

 Conceptual database design

 Logical database design

 Physical database design

4.5.1 Conceptual database design

Conceptual database design is the process of constructing a model of information used in an

enterprise, independent of all physical considerations. This step involves:

 Constructing the ER Model

 Check the model for redundancy

 Validating the model against user transactions to ensure all the scenarios are supported

4.5.1.1 ER Modeling

An entity relation model is a pictorial Representation of the real world problem in terms of

entities (which have attributes) and relations between the entities is referred as ER diagram.

 Entities: An entity is a class of distinct identifiable objects or concepts

 Relations: associations among entities.

 Attributes: attributes are properties or characteristics of entities.

54

4.5.1.2 Entity Relationship Diagram of the new system

KEY

Relationship

Entity

Cardinality

One to One relationship

One to Many relationship

Practitionerregister Approves

Data Capturer

Practitioner DetailsExports Imports

HITRAC

administrator

Practitioner

Static Data
Downloads Add/Edit

Qualification

Has

Address

Grade

Benefit
Contacts

StationStation at

Post

Has

Department

District

Located

Works

Province inProvince inCountry in

Fig 4.10 Entity Relationship Diagram

55

4.5.1.3 Enhanced Entity Relationship Diagram

KEY

Relationship

Entity

Cardinality

One to One relationship

One to Many relationship

Practitioner

register

Approves

 Data
Capturer

Practitioner
Details

Exports

Imports

HITRAC
administrator

Practitioner
Static Data

Downloads
Add/Edit

 Qualification

HasAddress

Grade

Benefit

Contacts

Station

Stationed at

Post

Has

Department

District

Located

Works

Province in
Country

in

Date_created

Modified_by

Address_type_id

name

description

Created_by

Date_created

Modified_by

contact_type_id

name

description

Created_by

Date_created
Modified_by

Address_type_id
name

description

Created_by

Date_created
Modified_by

salt usernamepassword

Created_by
Date_created

Modified_by saltusername

password

Created_by

Date_created
Modified_by

Static_data_idname

description

Created_by

Date_created Modified_by

district_id

name

description

Created_by

Date_created

Modified_by

province_id

name

description

Created_by

iana

country_id

Zip code

Iso_code1

un

name

Iso_code2

Date_created

Modified_by

department_id

name

description

Created_by
Date_created

Modified_by

post_id

name description

Created_by

Date_created

Modified_by

name

description

Created_by

Date_created

Modified_by

grade_id

name

description

Created_by

Date_created

Modified_by

station_id

name

description

Created_by

Department_id

version

Station_id

Notch_id

Is_deceased

Appointment_id

benefit_id

Station head

Ec_number

practitioner_id

Post_id

Identity_type_id

Id_number

Attribute

Fig 4.11 Enhanced Entity Relationship Diagram

56

4.5.2 Logical database design

Process of constructing a model of information used in an enterprise based on a specific data

model (e.g. relational), but independent of a particular Database Management System (DBMS)

and other physical considerations. This step involves:

 Table Generation from ER Model

 Normalization of Tables

Table Generation from ER Model

When deriving the tables from ER model the cardinality of relationships is divided into the

following categories:

One-to-one: One-to-one relationships results in a single entity. A table models each remaining

entity with a primary key and attributes, some of which may be foreign keys

One-to-many: For one-to-many relationships, a foreign key attribute in another table references

a primary key in the second table. This foreign key would refer to another table that would

contain the “many” side of the relation.

Many-to-many: Many-to-many relationships between two entities by a third table that contains

foreign keys referring to both the entities, (Buffer table).

Normalization of Tables: Normalization is a process of eliminating redundancy and other

anomalies in the system. In most cases in the enterprise world, normalization up to Third Normal

form would suffice. In certain cases or some transactions it is desirable that certain table be

demoralized for efficiency in querying the database tables. In those cases, tables can be in

demoralized form.

4.5.2.1 Database Tables

A table is a primary unit of physical storage for data in a database. Whenever a user accesses the

database, the desired data is queried from a database table. Multiple tables might comprise a

database; therefore, a relationship might exist between tables. Because tables store data, a table

requires physical storage on the host computer for the database.

57

Table 4.2 Country Table

Table 4.3 User Table

Table Name Description Field Data Type Foreign Keys

user user details Created_by

 username VARCHAR(45)

 password VARCHAR(255)

 salt VARCHAR(128)

 retired SMALLINT(6)

 retired_by CHAR (36)

 date_retired DATETIME

 date created DATETIME

 date_modified DATETIME

 modified by CHAR (36)

Table 4.4 User_role Table

Table Name Description Field Data Type Foreign Keys

country Countries name VARCHAR(255)

 iso_code1 VARCHAR(45)

 iso_code2 VARCHAR(45)

 iana VARCHAR(45)

 un VARCHAR(45)

 ioc VARCHAR(45)

 iso VARCHAR(45)

 itu VARCHAR(45)

Table Name Description Field Data Type Foreign Keys

user_role A user’s roles user_id CHAR (36) user_id in table user

 role VARCHAR(50) role in the table role

 username CHAR(36) user_id in table user

58

Table 4.5 Privilege Table

Table Name Description Field Data Type Foreign Keys

privilege users' permission retire_reason VARCHAR(255)

 retired SMALLINT(6)

 retired_by CHAR (36) user_id in user table

 modified_by CHAR (36) user_id in user table

 date_modified DATETIME

 date_created DATETIME

 date_retired DATETIME

 created_by CHAR (36) user_id in user table

 description

 privilege

Table 4.6 Role Table

Table Name Description Field Data Type Foreign Keys

role users' permission retire_reason VARCHAR(255)

 retired SMALLINT(6)

 retired_by CHAR (36) user_id in user table

 modified_by CHAR (36) user_id in user table

 date_modified DATETIME

 date_created DATETIME

 date_retired DATETIME

 created_by CHAR (36) user_id in user table

 description VARCHAR(255)

 role VARCHAR(50)

59

Table 4.7 Qualification Table

Table Name Description Field Data Type Foreign Keys

qualification practitioner's

qualifications

creator CHAR (36)

 qualification_id CHAR (36)

 practitioner_id CHAR (36)

 created by CHAR (36)

 date created DATE

 date_modified DATETIME

 date_voided DATETIME

 void_reason VARCHAR(255)

 voided SMALLINT(6)

 modified by CHAR (36)

 voided_by CHAR (36)

 institution_id VARCHAR(36)

Table 4.8 Title Table

Table Name Description Field Data Type Foreign Keys

title person's title title_id CHAR (36)

 name VARCHAR(255)

 description VARCHAR(45)

 date created DATETIME

 created by CHAR (36) user_id in the table user

 retired_by CHAR (36) user_id in the table user

 retire_reason VARCHAR(255)

 retired SMALLINT(6)

 date_retired DATETIME

 modified_by CHAR (36) user_id in the table user

 date_modified DATETIME

60

Table 4.9 Address Type Table

Table Name Description Field Data Type Foreign Keys

address_type Type of addresses address_type_id CHAR(36)- PK

 name VARCHAR(50)

 description VARCHAR(255)

 date_created DATETIME

 date_modified DATETIME

 description VARCHAR(255)

 retired SMALLINT(6)

Table 4.10 Practitioner Table

Table Name Description Field Data Type Foreign Keys

practitioner Practitioners

data

practitioner_id CHAR (36) PK in table person

 ec_number VARCHAR(45)

 department_id CHAR (36) PK in table

department

 created_by CHAR (36) PK in table user

 date_created DATE

 date_modified DATETIME

 modified_by CHAR (36) PK in table user

 post_id SMALLINT(6) PK in table post

 station_id CHAR (36) PK in table station

 appointment_date DATE

 notch_id CHAR (36) notch_id in notch

table

 appointment_term_id CHAR (36) PK in

appointment_term

61

Table 4.11 Person Table

Table Name Description Field Data Type Foreign Keys

person demography data person_id CHAR(36)

 date_of_birth DATE

 gender VARCHAR(45)

 marital_status_id CHAR(36) PK in

marital_status table

 title_id CHAR(36) title_id in table title

 created_by CHAR(36) user_id in

user_table

 date_created DATETIME

 date_modified DATETIME

 modified_by CHAR(36) user_id in

user_table

 voided SMALLINT(6)

 voided_by CHAR(36) user_id in user table

 date_voided DATETIME

 void_reason VARCHAR(45)

 nationality VARCHAR(250)

 dead SMALLINT(6)

 date_of_death DATE

 firstname VARCHAR(45)

 lastname VARCHAR(45)

 middlename VARCHAR(45)

 identity_no VARCHAR(45)

 identity_type_id CHAR(36) PK in identity_type

table

62

4.5.3 Physical Database Design

 Process of producing a description of the implementation of the database on secondary storage,

it describes the physical configuration of the database on the storage media. This step involves

describing the base relations, file organizations, and indexes design used to achieve efficient

access to the data, and any associated integrity constraints and security measures.

The American National Standards Institute (ANSI) Standards Planning and Requirements

Committee (SPARC), ANSI-SPARC database architecture uses three levels of abstraction:

external, conceptual, and internal.

Conceptual Schema

Internal Schema

Logical data

independence

Physical data

independence

View ViewView

External View

Database

Fig 4.12 ANSI-SPARC Database design

 4.5.3.1 External Level

The external level represents the user’s view of the database. It describes the part of the database

that is relevant to a particular user.

63

4.5.3.2 Conceptual Level

This level describes what data is actually stored in the database and the relationships that exist

amongst the data. The data is stored in tables, the table attributes specific feature’s (integer,

string and the exact size, format) (Viega and McGraw, 2001).

4.5.3.3 Internal Level

This level shows the highest level of abstraction and it is the physical representation of the

database on the computer. This level describes how the data is stored in the database. The

database manipulation is done using Structured Query Language (SQL). Below the internal level

there is a physical level that may be managed by the operating system under the direction of the

DBMS. A DBMS is a software system that enables users to define, create, and maintain the

database and which provides controlled access to this database.

4.6 Program design

The function of the program design phase is to produce the actual working software modules

specified in the System design phase. The program specifications from the system design phase

are used to design and code the individual program modules. Each module must conform to the

design documents produced in earlier phases and must be thoroughly tested in readiness for

integration and testing. The program design can be illustrated in three diagrams namely;

 Class Diagram.

 Package Diagram.

 Sequence Diagram.

4.6.1 Package Diagram

A package diagram in the Unified Modeling Language (UML) depicts the dependencies between

the packages that make up a model. In addition to the standard UML Dependency relationship,

there are two special types of dependencies defined between packages:

64

Package import - a package import is a relationship between an importing namespace and a

package, indicating that the importing namespace adds the names of the members of the package

to its own namespace.

Package merge - a package merge is a directed relationship between two packages that indicates

that the contents of the two packages are to be combined.

Fig 4.13 Package Diagram

4.6.2 Class Diagram of the new system

A class diagram is a static structure diagram that describes the structure of a system by showing

the system’s classes, their attributes and the relationships among the classes. Static models of a

system describe the structural relationships that hold between the pieces of data manipulated by

the system. Two major relationships exist between classes and these are inheritance and

association. Inheritance, also known as generalization, describes a super class/subclass

relationship. An empty arrow that points from the subclass to the super class represents an

inheritance relationship.

65

-person_id : Person

-gender : Person

-dirth_date

-title_id

-marital_status_id

-nationality_id

-citizenship_id

-is_deceased

-middlename

-lastname

-firstname

-version

-identity_tpye_id

-id_number

Person

-practitioner_id

-station_id

-post_id

-initial_employment_id

-department_id

-appointment_id

-notch_id

-has_ec_number

-created_by

-date_created

-modified_by

-date_modified

-pushed

-ec_number

Practitioner

Is-a

-username

-password

-salt

-employee_id

-retired

-retired_by

-date_retired

-retire_reason

-created_by

-date_created

-changed_by

-date_changed

-secret_question

-secret_answer

-date_modified

-description

-name

-modified_by

User

-title_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Title

1

1

-marital_status_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Marital Status

-identity_type_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Identity Type

-nationality_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Nationality

Is-a

1

1

-identity_type_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Identity Type

-role_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Role

-privilege_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Privilege

*

* *
*

-post_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Post

-station_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Station

-districtt_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

District

-department_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Department

-notch_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Notch

1

1

1

1

1
1

-practitioner_status_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

Practitioner Status
1

1

-qualification_id

-name

-description

-created_by

-date_created

-retired

-retired_by

-date_retired

-retire_reason

-modified_by

-date_modified

-awarding_institute

-date_awarded

Qualification

1

1

1

1

1

1

1

1

1

1
1

1

KEY

1 1

* *

Class

One to One relationship

Inheritance

Many to many relationship

Fig 4.14 Class Diagram of the proposed system

66

4.6.3 Sequence Diagram

A sequence diagram in a Unified Modeling Language (UML) is a kind of interaction diagram

that shows how processes operate with one another and in what order. It is a construct of a

Message Sequence Chart. A sequence diagram shows object interactions arranged in time

sequence. It depicts the objects and classes involved in the scenario and the sequence of

messages exchanged between the objects needed to carry out the functionality of the scenario.

Sequence diagrams typically (but not always), are associated with use case realizations in the

Logical View of the system under development.

Administrator Data Capturer/ HIO Login Register Manage Static DataHome Page

Enter Login Details

Login Details

Enter Login Details

Login Details

Login Attempt

Login Attempt

Login Successful

Login Successfull

Request Details of Practitioner

Download Static Data

Practitioner Registration Successful

Download Successful

Add Static Data

Static data Updated Successfully

Export Request

Imports

KEY

Activation

Message return

Message Call

Message

Object

Message Return

Fig 4.15 Sequence diagram of the proposed system

67

4.7 Interface design

User interface design or user interface engineering is the design of computers, appliances,

machines, mobile communication devices, software applications, and websites with the focus on

the user's experience and interaction. The goal of user interface design is to make the user's

interaction as simple and efficient as possible, in terms of accomplishing user goals—what is

often called user-centered design. Good user interface design facilitates finishing the task

without drawing unnecessary attention to its self. Graphic design may be utilized to support its

usability. The design process must balance technical functionality and visual elements (e.g.,

mental model) to create a system that is not only operational but also usable and adaptable to

changing user needs.

4.7.1 Menu Design

This is the design of pages that a user sees when he or she logs into the system. This usually

includes the main menu and the sub menus

4.7.1.1 Main Menu

When a user logs into the system the main menu form below should appear.

Fig 4.16 Main Menu Form

68

4.7.1.2 Sub Menus

After logging into the System, a user can register, download, upload, or mange practitioners. If a

user is a provincial admin, he or she downloads all the static data used in registering a

practitioner using the form below

Fig 4.17 Static Data download Form

If a user clicks the Data export link the below is be displayed

Fig 4.18 Data export Form

If a user clicks the Data import link the below is displayed

Fig 4.19 Data import Form

69

4.7.2 Input Design

It is the process of converting a user-oriented description of the input into a computer-based

system. The design of input focuses on controlling the amount of input required, controlling the

errors and keeping the process simple. The input design is a sketch of the input forms in the

system.

Login user interface of the proposed NHPIS System

 Fig 4.20 Login Form

The after logging in the administrator at HITRAC can add static data using the form below.

Fig 4.21 Add Static data Form

A user of the system can search for a practitioner using the Search form.

Fig 4.22 Search Practitioner Form

70

The administrator can also edit, retire a static data using the form below.

Fig 4.23 Add or Edit Static data Form

The HIO registers a practitioner using the create practitioner form

Step one of creating a practitioner

Fig 4.24 Create Practitioner step 1 of 5 Form.

71

Step two of creating a practitioner

Fig 4.25 Create Practitioner step 2 of 5 Form.

72

Step three of creating a practitioner

Fig 4.26 Create Practitioner step 3 of 5 Form.

At step 4 of creating a practitioner, the data capturer or HIO checks if the practitioners have

submitted the supporting documents.

Fig 4.27 Create Practitioner step 4 of 5 Form.

73

Step five of creating a practitioner

Fig 4.28 Confirm Details- Create Practitioner step 5 of 5 Form.

The user of the system can perform an advanced practitioner search based on province, post,

station, district, appointment term, and employment category or employment type using the

advanced search form.

Fig 4.29 Advanced Practitioner Search Form

74

4.7.3 Output User Interface

 A quality output meets the requirements of the end user and presents the information clearly. In

output design it is determined how the information is to be displaced for immediate need also the

hard copy output.

The overall Practitioner profile

Fig 4.30Advanced Practitioner Search Form

Reports generated from the system for MoHCW. An example of the reports generated:

Fig 4.31 Reports generated

75

4.8 Security Design

The NHPIS system was design with security in mind. The diagram below shows how the

researcher secured the NHPIS software from the browser up to the database.

Figure 4.31 Security Design Issues

4.8.1 Web application design issues

The design guidelines are organized by application vulnerability category poor design in these

areas, in particular, leads to security vulnerabilities (Cavusoglu, Mishra and Raghunathan, 2002).

Below is a list of web application vulnerabilities and potential problem due to bad design:

 Input Validation - Attacks performed by embedding malicious strings in query strings,

form fields, cookies, and HTTP headers. These include command execution, cross-site

scripting (XSS), SQL injection, and buffer overflow attacks.

 Authentication - Identity spoofing, password cracking, elevation of privileges, and

unauthorized access.

 Authorization - Access to confidential or restricted data, tampering, and execution of

unauthorized operations.

 Configuration Management - Unauthorized access to administration interfaces, ability to

update configuration data, and unauthorized access to user accounts and account profiles.

76

 Sensitive Data - Confidential information disclosure and data tampering.

 Session Management - Capture of session identifiers resulting in session hijacking and

identity spoofing.

 Cryptography - Access to confidential data or account credentials, or both.

 Parameter Manipulation - Path traversal attacks, command execution, and bypass of

access control mechanisms among others, leading to information disclosure, elevation of

privileges, and denial of service.

 Exception Management - Denial of service and disclosure of sensitive system level

details.

 Auditing and Logging - Failure to spot the signs of intrusion, inability to prove a user's

actions, and difficulties

4.9 Conclusion

The design phase enabled the researcher to come up with the way the system operates. The

researcher had a view of how the physical architecture, NHPIS software components are

integrated. Inputs, processes and outputs of the new system were designed. Data flow, entity

relationships and the database were designed as a whole. All this was done to prepare for the

implementation of the proposed system.

Security design permeated every stage of the product development life cycle and it was a focal

point of application design. Pay particular attention to the design of a solid authentication and

authorization strategy. The majority of application level attacks rely on maliciously formed input

data and poor application input validation. The guidance presented in this chapter helped the

researcher solve challenging aspects of designing and building secure applications.

77

CHAPTER FIVE: IMPLEMENTATION PHASE

5.1 Introduction

System implementation is the final phase in the SDLC. During this phase the system is

developed, (Swanson, 1976). It is the longest, most expensive phase of the SDLC. The

researcher built the system components from scratch. From design and analysis phase, the

researcher developed exactly what he had proposed.

The implementation phase has three phases which are:

 System construction: Building and testing the system to ensure it performs as designed in

the design phase and as per user requirements specifications

 System installation: Deploying the system for live production

 Post-Implementation review: a support plan for the system, as well as a systematic way

for identifying changes in the system.

The implementation phase deals with issues of quality, performance, baselines, libraries, and

debugging. The end deliverable is the product itself. In this phase, the software product was

installed, initial user training was completed and user documentation was delivered. When this

phase is completed, the application is in steady-state production. The researcher established best

development practices to detect and remove security and privacy threats using spring security.

Successful completion of the implementation phase comprises:

 System Testing

 System deployment or installation

 User training

 System maintenance

Once the system is in steady-state production, it is reviewed to ensure that all of the goals in the

project plan of the planning phase were successfully implemented to the users’ full satisfactory.

The NHPIS system was developed with the users of the system at heart.

78

5.2 Coding

This is also called the programming phase in which the programmer converts the program

specifications into computer instructions, which we refer to as programs. The programs

coordinate the data movements and control the entire process in a system. It is generally felt that

the programs must be modular in nature. This helps in fast development, maintenance and future

changes, if required. The software developers take the design documents and development tools

(editors, compilers, debuggers etc.) and start writing software. This is usually the longest phase

in the product life cycle. A well-written code reduces the testing and maintenance effort. Hence,

during coding simplicity and clarity should be strived for (Reutter, 1981).

5.2.1 Pseudo Code

According to Reutter (1981) pseudo-code is a non-formal language, a way to create a logical

structure, describing the actions executed by the application. The researcher described the

application logic using his native language, without applying the structural rules of a specific

programming language.

Creating a connection to the MySQL Database

 If username and password are correct

 Connect to the Database

 Else

 Database Connection error

Method to save a record

 Object method saveObject

 Return the method get Hibernate Template method and use the merge method to save an entity

Method to delete a record

 Return nothing and deleteObject by objectID

 Get Hibernate Template method and the delete by objectID

79

Method to update a record

Object get Object (Parameter ObjectID)

 Object obj = (Object) getHibernateTemplate method and use the get method

 If obj equals null

 Log warning “Object not found”

 Throw new Object Retrieval Failure Exception

 Else

 Return obj

Method to list records

Suppress Warnings unchecked

 List Object get All method

 Returns get Hibernate Template method and load all method

Method to list distinct records

Suppress Warnings unchecked

List<Object> getAllDistinctObject method

 Collection result equals new Linked Hash Set getAll method

 Return new Array List method and pass parameter equals result

Method to check duplication of records

 Object obj equals (Object) getHibernateTemplate and get method parameter equals objectID

 If obj is not equals null

 Return obj

Create Reports

 Get database connection

 If database username and password equals null or wrong

 Display Database Connection Failed

 Else

 Execute Report Query

 Display Record in PDF format

Download and Export

 If result has Errors

 For Object Error: Results get All Errors

 Display "Error: " + errors get Code + " - " + errors get Default Message

 Return uploads File

 Try

 Upload list and Return list

 Catch Exception

 Return toString method

80

5.3 Testing

Testing is the process of evaluating a system or application, to check whether the application

meets all requirements of the client and to detect the errors. Testing is executing a system in

order to identify any gaps, errors or missing requirements in contrary to the actual desire or

requirements (Barlow, 1994). System testing was performed manually and functional tests were

written in detail. The researcher used Apache Maven package to perform an automated JUnit

testing on the methods used in the NHPIS application.

5.3.1 Methods of Testing

The testing methods that were used for testing the NHPIS software include black, white and grey

box testing.

5.3.1.1 Black Box Testing

The technique of testing without having any knowledge of the interior workings of the

application is Black Box testing. The tester was familiar with the system architecture and had no

access to the source code. Typically, when performing a black box test, a tester interacts with the

system's user interface by providing inputs and examining outputs without knowing how and

where the inputs are worked upon, (Taggart, 1986).

The advantages of Black Box Testing are:

 Large numbers of moderately skilled testers can test the application with no knowledge

of implementation, programming language or operating systems.

 Well-suited and efficient for large code segments and code access not required.

The disadvantages of Black Box Testing are:

 The test cases are difficult to design.

 The tester cannot target specific code segments or error prone areas.

81

5.3.1.2 White Box Testing

According to Taggart (1986), white box testing is the detailed investigation of internal logic and

structure of the code. In order to perform white box testing on an application, the tester needs to

possess knowledge of the internal working of the code.

The advantages of White Box Testing are:

 It helps in optimizing the code.

 Extra lines of code can be removed which can bring in hidden defects.

The advantages of White Box Testing are:

 Because a skilled tester is needed to perform white box testing, the costs are increased.

 It is difficult to maintain white box testing as the use of specialized tools like code

analyzers and debugging tools are required.

5.3.2 Levels in Testing

There are different levels during the process of Testing. The first level in testing is functional

testing.

 Functional Testing - This type of black box testing is based on the specifications of the

software that is to be tested. The application is tested by providing input and then the

results are examined that need to conform to the functionality it was intended for. here

are different stages for functional testing; these include unit testing, integration testing,

system testing and user acceptance testing.

5.3.2.1 Unit Testing

The researcher performed this type of testing before the setup was handed over for test case to

the testing team. The goal of unit testing is to isolate each part of the program and show that

individual parts are correct in terms of requirements and functionality.

82

5.3.2.2 Integration Testing

The testing of combined parts of an application to determine if they function correctly together is

Integration testing. There are two methods of integration testing and these are:

 Testing Bottom-up Integration testing: this testing begins with unit testing, followed by

tests of progressively higher-level combinations of units called modules or builds.

 Top-Down Integration testing: This testing, the highest-level modules are tested first and

progressively lower-level.

In a comprehensive software development environment, bottom-up testing is usually done first,

followed by top-down testing. The process concludes with multiple tests of the complete

application, preferably in scenarios designed to mimic those it will encounter in users'

computers, systems and networks. The researcher tested the integrated modules of the system.

5.3.2.3 System Testing

This is the next level in the testing and tests the system as a whole. Once all the components are

integrated, the application as a whole is tested rigorously to see that it meets software quality

standards. The NHPIS was tested and it met all the software quality defined in the Planning

Phase. A specialized testing team performs this type of testing. System testing is so important

because of the following reasons:

 The application is tested thoroughly to verify if meets the functional and technical

specifications.

 The application is tested in an environment, which is very close to the production

environment where the application will be deployed.

 System Testing enables us to test, verify and validate both the business requirements as

well as the Applications Architecture.

5.3.2.4 Regression Testing

Whenever a change in a software application is made, it is quite possible that other areas within

the application have been affected by this change. To verify that a fixed bug has not resulted in

another functionality or business rule violation is Regression testing. The intent of regression

83

testing is to ensure that a change, such as a bug fix did not result in another fault being uncovered

in the application. Regression testing is so important because of the following reasons:

 Minimize the gaps in testing when an application with changes made has to be tested.

 Testing the new changes to verify that the change made did not affect any other area of

the application.

 Mitigates Risks when regression testing is performed on the application.

The researcher performed a regression test whenever a change was made.

5.3.2.5 Acceptance Testing

This is arguably the most important type of testing as it is conducted by the quality assurance

(QA) team. Basically they were gauging whether the application met the intended specifications

and satisfied the users’ requirements. The QA team had a set of pre written scenarios and test

cases that were to test the application. More ideas were shared about the application and more

tests can be performed on it to gauge its accuracy and the reasons why the project was initiated.

Acceptance tests are not only intended to point out simple spelling mistakes, cosmetic errors or

interface gaps, but also to point out any bugs in the application that will result in system crashing

or major errors in the application. By performing acceptance tests on an application the QA team

can deduce how the application will perform in production. There are also legal and contractual

requirements for acceptance of the system.

5.3.2.6 Alpha Testing

This test was performed by the researcher and QA team. Unit testing, integration testing and

system testing when combined are known as alpha testing. During this phase, the following was

tested in the application:

 Spelling Mistakes

 Broken Links and Cloudy Directions

 The Application was tested on machines with the lowest specification to test loading

times and any latency problems.

The spelling mistakes, broken links and cloudy directions were corrected before beta testing

84

5.3.2.7 Beta Testing

This test was performed after alpha testing had been successfully performed. In beta testing, a

sample of the intended audience tests the application. Beta testing is also known as pre-release

testing. In this phase, the audience will be testing the following:

 Users will install, run the application and send their feedback to the project team.

 The project team can fix the problems before releasing the software to the actual users.

The second level in testing is non-Functional Testing.

 Non-Functional Testing: Based on testing the application from its non-functional

attributes. Non-functional testing of software involves testing the software from the

requirements, which are non-functional in nature related. It involves:

5.3.2.8 Performance Testing

It was used to identify any bottlenecks or performance issues rather than finding the bugs in

software. There are different causes that contribute in lowering the performance of software:

 Network delay.

 Client side processing.

 Database transaction processing.

The software passed the performance testing. Performance testing is considered as one of the

important and mandatory testing type in terms of following aspects:

 Speed (i.e. Response Time, data rendering and accessing)

 Capacity, Stability, and Scalability of the NHPIS application.

 Performance testing can be either qualitative or quantitative testing activity and can be

divided into different sub types such as load testing and stress testing.

5.3.2.9 Load Testing

Is a process of testing the behavior of the software by applying the maximum load in terms of

software accessing and manipulating large input data. It can be done at both normal and peak

85

load conditions. This type of testing identifies the maximum capacity of software and its

behavior at peak time.

5.3.2.10 Stress Testing

Stress testing is testing of software behavior under abnormal conditions. Taking away the

resources, applying load beyond the actual load limit is stress testing. The main intent is to test

the Software by applying the load to the system and taking over the resources used by the

software to identify the breaking point.

5.3.2.11 Usability Testing

It is a black box technique and was used to identify any errors and improvements in the NHPIS

software by observing the users through their usage and operation. According to Nielsen,

usability can be defined in terms of five factors i.e. efficiency of use, learn-ability, memory-

ability, errors/safety, satisfaction. Usability is the quality requirement, which can be measured as

the outcome of interactions with a computer system. This requirement can be fulfilled and the

end user will be satisfied if the intended goals are achieved effectively with the use of proper

resources. Molich in 2000 stated that user-friendly system should fulfill the following five goals

i.e. easy to learn, easy to remember, efficient to use, satisfactory to use and easy to understand.

In addition to different definitions of usability, there are some standards and quality models and

methods, which define the usability in the form of attributes, and sub attributes such as ISO-

9126, ISO-9241-11 and ISO-13407.

5.3.2.12 UI vs. Usability Testing

UI testing involves the testing of graphical user interface (GUI) of the Software. This testing

ensures that the GUI should be according to requirements in terms of color, alignment, size and

other properties. On the other hand Usability testing ensures that a good and user friendly GUI is

designed and is easy to use for the end user. UI testing can be considered as a sub part of

usability testing

86

5.3.2.13 Security Testing

Security testing involves the testing of Software in order to identify any flaws ad gaps from

security and vulnerability point of view. Following are the main aspects, which Security testing

should ensure:

 Confidentiality and integrity.

 Authentication and authorization

 Input checking and validation.

 SQL insertion attacks.

 Session management issues.

 Cross-site scripting attacks.

5.3.2.14 Portability Testing

Portability testing includes the testing of Software with intend that it should be re-useable and

can be moved from another Software as well. Following are the strategies that were used for

portability testing:

 Transferred installed software from one computer to another.

 Building executable (.war) to run the software on different platforms.

5.3.3 System performance and objective evaluation

NHPIS was tested to check if it met the entire project objectives identified in the system

requirements specification stage. Screenshots and their relative messages were used to display

the testing result. A test of the specified system objectives was carried and their results were

displayed to show how the test procedures were conducted. Screenshots were used to display the

testing result.

5.3.3.1 System objectives

1. To enable easy access and manipulation of practitioners’ data at provincial and national level.

Refer to the system

87

2. To promote accountability and responsibility on every act, event or use of the system.

Fig 5.1 Audit trail on database

3. To develop tool to track and monitor continuous professional development of the health care

practitioners.

Fig 5.2 Add Practitioner qualification

4. To develop a system that uniquely identifies a practitioner.

Fig 5.3 Checks for duplication

The system does not allow more than 1 practitioner to have the same National ID or EC Number.

88

5. To develop a system that enforces same naming standards for reporting consistency.

Refer to the System Download module

6. To establish connectivity, functional integration and interoperability of the databases at

provincial level with the national instance

Refer when the system has been deployed

7. To enable flexible and accurate report generation

Refer to the Reports module

8. To enable automatic synchronization of a provincial data manipulation with the national

instance database state.

Refer to the System operation

5.3.5 Verification and Validation

In software project management, software testing, and software engineering, verification and

validation is the process of checking that a software system meets specifications and that it

fulfills its intended purpose. It is referred to as software quality control. It is normally the

responsibility of software testers as part of the SDLC.

Verification and validation is not the same thing, although they are often

confused. Boehm succinctly expressed the difference between them:

 Validation: Are we building the right product?

 Verification: Are we building the product right?

There are two categories of validation these are

 Server-side validation – The data entered into the system is validated when a user saves

into the database

 Client-side validation- The system validates the text box, select fields, and combo boxes

using JavaScript.

The researcher performed server side validation in case a browser does not support Java Script.

89

5.3.5.1 Login Validation

The authentication was validated and if a user enters wrong login details the following erro

message appear:

Fig 5.4 Validated Login form

5.3.5.2 Null Field Validation

The NHPIS system was validated, every input form was validated. In order to have clean data the

inputs should be validated. If a user save a null field the following error messages appear

Fig 5.5 Null Field Validation

90

5.3.5.3 Zimbabwean National ID and Passport Number Validation

The system Zimbabwean National ID and Passport Number

Fig 5.6 National ID and Passport Number Validation

5.3.5.4 EC Number validation

A practitioner’s EC number is validated

Fig 5.7 EC number validation

91

5.4 Installation

The NHPIS system was deployed in four provinces linked to the national instance, while other

six provinces continue using the current manual system for a trial period. The national instance

war file was deployed on HITRAC server as in the design phase. Apache Tomcat Server was

used to deploy the NHPIS web portal (nhpis.war) and the NHPIS web services portal. The web

services portal will allow the provincial systems to consume the services of the national instance.

After successful installation at the national server, the system was installed at each of the

selected four provinces. If a practitioner is registered, his details are pushed (or synchronized) to

the national database.

5.4.1 Steps in software installation process

Software installation also encompasses the process of installing the software or application

environment required to support the system being developed. In the case of the NHPIS software,

installation involves building of the war file and deploying of the system for full production.

For Users who are non-developers of the software the following software need to be installed:

 Install Linux OS on the machine (Redhat, Ubuntu or Fedora latest versions)

 Open terminal and install apache2 and php5

 Install Apache Tomcat Server software on the web server. Latest version 7.0.39

 Install MySQL server and Phpmyadmin on the server as well for database management.

 Open the dispatcher-servlet.xml file, change the national instance to false when at

province and to true when at national instance. Build the war file and deploy on Apache

Tomcat

 Restore the database of the system in linux (if a user is in Linux type mysql –uUsername

– pPassword databaseName < /FolderWithSql File/databasename.sql)

 Type the URL http://serverip:8080/nhpis-portal that is http://192.168.1.22:8080/nhpis-

portal and http:// 192.168.1.22:8080/nhpis-webservices-portal

 Run the system and set the systems properties, when at provincial level set the host IP

address to and http://nationalServerIPaddress:8080/nhpis-webservices-portal and set the

minimum age of practitioners to 16 years and maximum retiring age to 65 years

92

 For the first time if the database is empty the default username is admin and the default

password is a.

 Login and change the password.

For developers install:

 JDK 1.6

 Netbeans (7.2 or later)

 MySQL Workbench

 Configure Apache Tomcat Server as a service. To start the tomcat service just type in

terminal (sudo tomcat service start) and to stop (sudo tomcat service stop)

 Redmine for tracking the NHPIS software versions

 GIT Server for pulling, cloning, pushing source code when working as a team, Just type

sudo apt-get install git-server

 Build the project from Folder containing the source code and run the system in Netbeans.

 Restore the mysql database (Linux type mysql –uUsername – pPassword databaseName

< /FolderWithSql File/databasename.sql)

5.4.2 User training

User training is the process of introducing the users to the new system highlighting on how to

use the new system, Bentley et al (1994). For the NHPIS software, users that were trained

include Health information Officers (HIO), MoHCW management, and Hitrac Administrator and

maintenance programmers. Refer to Appendix A for User Manual

5.4.2.1 Training plan

The user training was scheduled for HITRAC staff members starting with the management and

then with the other system developers since they would be responsible for troubleshooting or

debugging and helping the users with challenges that may be faced during the system operation

as well as maintenance and further development. The researcher of the NHPIS software attended

all the training sessions. The following users were trained:

93

 HITRAC Administrators: The administrators were trained on how to use the system to

upload health practitioners’ data from provincial level into the system, adding static data

into the system, managing practitioner details, backing up of the databases

 HIO also the Provincial administrators: The training was on how to import practitioner

data from provinces in case its offline, how to download the static data, how manage the

provincial databases and how to create a practitioner in the system, and how to

Table 5.1 HITRAC Administrators training

Venue HITRAC Organization

Users Administrators and System Developers

Training Scope Administrator module, NHPIS functionality, NHPIS database backup

and Report generation

Requirements A single computer and an projector for screen elaboration

Trainer System Developer (Artwell Mamvura)

Table 5.2 Provincial Administrators

Venue Mandel Training Centre, Harare Zimbabwe

Users Provincial Administrators

Training Scope Health Practitioner Data capturing, Exporting of practitioner data,

System functionality overview, System Trouble shooting, Handling

errors, Documenting changes, downloading static data, exporting

practitioner files, viewing reports, User creation, Database backup

Requirements Four computers and, a projector.

Trainer System Developer (Artwell Mamvura) and the HITRAC

administrator and one System Developer and the respective

Provincial Administrator

94

5.4.3 System Conversion

System conversion is a technical process where a new system (NHPIS system) replaces the

current system. After the training and operational environment is setup the new system can now

replace the current or current system. There are several methods that can be used to install the

new system and these include the following direct conversion, pilot conversion, phased

conversion and parallel conversion.

5.4.3.1 Direct Conversion

This is the complete replacement of the current or current system by the new system. It is a risky

approach and requires comprehensive system testing and training. The provinces that were using

the current system will immediately function under the new system. A direct conversion may be

the only option if the current and new systems cannot co-exist in any form. If used, it should not

be done in a peak period where transition hiccups will upset the organization. This is a least

expensive method among all four because it can occur in the quickest time. However, it involves

high risk of data loss as the organization cannot revert to the current system as a backup option.

The researcher did not use the direct conversion method.

5.4.3.2 Pilot conversion

In this type of run, the new system is run with the data from one or more of the previous periods

for the whole or part of the system. The results are compared with the current system results. It is

less expensive and risky than parallel run approach. This strategy builds the confidence and the

errors are traced easily without affecting the operations, however, the system was not deployed

using the pilot conversion method.

5.4.3.3 Phased conversion

In a phased conversion, a new system will be installed in phases rather than a complete

transformation at one time. The phased approach takes the conversion one-step at a time.

Moreover, at every milestone one has to instruct the employees and other users. The current

system is taken over by the new system in predefined steps until it is totally abounded. The

actual installation of the new system will be done in several ways, per module or per product and

95

several instances can be carried out. This gives the users the time to cope with the changes

caused by the system. The conversion will be done in parts. Time is available for adjustments.

Negative influences that arise at the start are less critical and no ‘catch-up’ period is needed. The

NHPIS system was not deployed using the phased system conversion method.

5.4.3.4 Parallel conversion

In parallel conversion the both the systems are run or used that is computerized and manual, are

executed simultaneously for certain defined period. The same data is processed by both the

systems. This strategy is less risky but more expensive because of the following:

 Manual results can be compared with the results of the computerized system.

 The operational work is doubled.

 Failure of the computerized system at the early stage does not affect the working of the

organization, because the manual system continues to work, as it used to do.

The NHPIS system (new system) was deployed in four provinces in parallel with the manual

system (current system). According to the schedule by 2014 all the provinces would have been

connected. The NHPIS system will basically work as per the diagram below:

Fig 5.4 Parallel Conversion

5.5 Maintenance

Maintenance is the last stage in the system development life cycle and, consequently, is affected

by everything that happens in the previous stages. Errors made during the analysis and design

96

stages can significantly impact maintenance. It relies on the documentation created during the

analysis, design, testing and implementation stages, and the system maintenance life cycle

parallels the system development life cycle. Maintenance begins when the system is released and

continues for the life of the system. Over a period of years, it is not unusual for the cost of

maintaining a system to significantly exceed the cost of developing it, so a primary objective is

controlling maintenance costs. When the cost of maintaining and operating an obsolete or

inefficient system exceeds the cost of replacing it, the system life cycle ends and a new life cycle

begins. The key to controlling maintenance costs is to design systems that are easy to change, so

the link between development and maintenance is very strong.

Maintenance is necessary to eliminate errors in the system during its working life and to tune the

system to any variations in its working environments. If a major change to a system is needed, a

new project may have to be set up to carry out the change. The new project will then proceed

through all the above life cycle phases. There is much more to maintenance than fixing bugs. The

categories suggested by Swanson and extended by Reutter are widely accepted. The types of

maintenance include:

 Corrective maintenance

 Adaptive maintenance

 Perfective maintenance

 Preventive maintenance

5.5.1. Corrective maintenance

Corrective maintenance refers to changes made to repair defects in the design, coding, or

implementation of the system. Most corrective maintenance problems surface soon after

installation. When corrective maintenance problems surface, they are typically urgent and need

to be resolved to continue normal business activities. Corrective maintenance adds little or no

value to an organization; it simply focuses on removing defects from an existing system without

adding new functionality.

97

5.5.2 Adaptive maintenance

Adaptive maintenance involves making changes to an information system to evolve its

functionality to changing business needs or to migrate to a different operating environment. It

adds enhancements to an operational system, such as new features, increased capability, or

changes that improve efficiency or maintainability. An adaptive maintenance project is like a

mini-SDLC project, and that adaptive maintenance can be even more difficult than new systems

development because the enhancements must work within the constraints of an existing system.

Adaptive maintenance is usually less urgent than corrective maintenance because business and

technical changes typically occur over some period. Adaptive maintenance is generally a small

part of an organization’s maintenance effort, but does add Value to the organization.

5.5.3 Perfective maintenance

Perfective maintenance involves making enhancements to improve processing performance,

interface usability, or to add desired, but not necessarily required, system features. The objective

of perfective maintenance is to improve response time, system efficiency, reliability, or

maintainability. During system operation, changes in user activity or data pattern can cause a

decline in efficiency, and perfective maintenance might be needed to restore performance.

Usually, the IT department initiates the perfective maintenance work, while users normally

request the corrective and adaptive maintenance work.

5.5.4 Preventive maintenance

 Preventive maintenance involves changes made to a system to reduce the chance of future

system failure. An example of preventive maintenance might be to increase the number of

records that a system can process far beyond what is currently needed or to generalize how a

system sends report information to a printer so that so that the system can adapt to changes in

printer technology. Preventive maintenance is less likely to occur as compared to corrective

maintenance.

Finally note that over the life of a system, corrective maintenance is most likely to occur after

system installation or after major system changes. This means that adaptive, perfective, and

98

preventive maintenance activities can lead to corrective maintenance activities if not carefully

designed and implemented.

5.5.5 Managing maintenance

Maintenance is expensive. The elements of a system often interact in unexpected ways, and

ripple effects (unexpected bugs or new errors caused by a change intended to fix an initial

problem) can be devastating. Sometimes, apparently unrelated maintenance problems are tightly

linked. Consequently, maintenance must be carefully managed. Formal maintenance procedures

are the key to managing maintenance.

5.5.5.1 Maintenance Team

 A maintenance team is a group of systems analysts and programmers with strong technical,

interpersonal, business, communications, and problem-solving skills that use both analysis and

synthesis. Analysis is the process of examining the whole in order to learn about the individual

elements. Synthesis is the process of studying the parts to understand the overall system. ITS

managers often divide systems analysts and programmers into two groups: one group performs

new systems development and the other group handles all maintenance. The advantage is that

the maintenance group develops strong support skills. Some organizations use a more flexible

approach and assign IS staff members to various projects as they occur. By integrating

development and support work, the people developing the system also assume responsibility of

maintaining it.

5.5.6 The system maintenance life cycle

The system maintenance life cycle is similar to the system development life cycle. Configuration

management, the process of managing and controlling changes to a system, defines a context or

methodology, including formal procedures for requesting, evaluating, and implementing

changes. Evaluation analysis (a phase that parallels the information gathering and problem

definition stage of the system development life cycle) is used to assess the impact of a proposed

change. The objective is to identify and document the applications, programs, routines, and other

components that must be modified, the likely impact of the change on normal operations, and the

99

time, cost, and other resources required to implement the change. Next, the change is analyzed,

designed, coded, and tested. After the work is done, the proposed system or change is released.

Change

requests

Impact

analysis

System

review

planning

Change

implementation

System

release

Corrective

Maintenace

Adaptive

Maintenace

Preventative

Maintenance

Perfective

Maintenance

Fig 5.5 System Maintenance Life Cycle

5.5.7 Prioritization

Given the budgetary and resource constraints imposed on the system maintenance process, it is

not unusual to have a backlog of change requests. Some organizations rely on simple first-in-

first-out or (less frequently) last-in-first-out schemes to prioritize the requests. Other

organizations prioritize the requests based on a preliminary evaluation analysis. Note that a

sound evaluation analysis is the key to deciding if maintenance or new system development is

needed to solve the problem.

5.5.8 Fire fighting

Some maintenance problems require an immediate response. Following a system crash, a major

integrity threat, such fire fighting activities are relatively rare, however, and emergency patches

should be formally incorporated into a subsequent NHPIS release.

5.5.9 Standards and quality assurance

Many system developers or system maintainers view all maintenance as fire fighting.

Consequently, in their rush to get the job done, they sometimes ignore or disregard quality

100

assurance and other standards. It is important that all changes be made in a consistent manner.

Consequently, such standards as code efficiency targets, fault tolerance rates, operational

sequence optimization guidelines, and expected performance norms must be established and

enforced, and even true fire fighting activities must be brought up to standards after the fact.

5.6 Conclusion

When the implementation phase concludes, the system begins operating and continues to do so

until the organization determines it has outlived its usefulness and starts planning for a

replacement system. The approval of the Implementation Phase deliverables and the completion

of the Implementation project status review, and the execution of project closeout activities,

signify the end of the Implementation Phase.

101

REFERENCES

Books

1. Alain Abran, James W. Moore; (2005), Guide to the software engineering body of

knowledge, Los Alamitos, CA: IEEE Computer Society Press

2. Bennatan, E. M., (1995), On Time, Within Budget Software Project Management

Practices and Techniques, Wiley.

3. Birrell, N. D. and Ould, M.A., A Practical Handbook for Software Development,

Cambridge University Press, Cambridge, UK, 1985.

4. Cavusoglu H, Mishra B and Raghunathan S, The Effect of Internet Security Breach,

(2002) Univ.of Texas at Dallas.

5. Clifton, D. S. and Fyffe, Project Feasibility Analysis: A Guide to Profitable New

Ventures, (1977), John Wiley & Sons, New York.

6. Conger, S Software Engineering (1994) Belmont California: Wadsworth, Inc

7. Davis C, Alan M, 201 Principles of Software Development, (1995), New York, NY:

McGraw-Hill, Inc.

8. Fournier, R., Practical Guide to Structured System Development and Maintenance,

Yourdon, Englewood Cliffs, NJ, 1991.

9. Garmus D, David H (1996), Measuring the Software Process: A Practical Guide to

Functional Measurements, Upper Saddle River, NJ: Prentice-Hall Inc.

10. Hoffer, J., George, J., & Valacich, J. (2006), Modern systems analysis and design 6th.

Prentice Hall: U.S.A.

11. Hoglund G and McGraw G, Exploiting Software, (2004), Addison-Wesley.

12. Howard M and LaBlanc D, Writing Secure Code, (2003), Microsoft Press.

13. Jeffrey L Whitten and Lonnie D Bentley, (2001), System Analysis and Design Methods (7th

Edition), Prentice Hall of India

14. Jones, H Handbook of team design (1998). New York McGraw-Hill

15. Kendell K.E and Kendell J.E, (2002), Systems Analysis and Design, Pearson Education

Asia

http://www.swebok.org/
http://www.swebok.org/

102

16. Kotonya, G. and Sommerville, I, (1998), Requirements Engineering: Processes and

Techniques, UK: John Wiley and Sons.

17. Levin, Mark Sh., Composite Systems Decisions (2006), Springer, New York,

18. Maier, Mark W., and Rechtin, Eberhardt, The Art of Systems Architecting, Second

Edition, (2000), CRC Press, Boca Raton.

19. McGraw G, “Software Security,” IEEE Security & Privacy, (2004), Prentice Hall

20. Pierce, S Software System engineering: a first course (1992) Wilsonville, Oregon:

Franklin, Beedle & Associates, Inc

21. Rajaraman V, (2004), Analysis and Design of Information Systems, Prentice Hall of

India

22. Reutter, J., Maintenance is a management problem and a programmer’s opportunity,

AFIPS Conf. Proc. 1981 Natl. Comput.

23. Saltzer, J.H, et al., End-to-End arguments in Systems Design in: ACM Transactions in

Computer Systems, (1984), Springer, New York,

24. Schach, S Classical and object oriented software engineering with UML & C++ 4th

Edition (1999) New York McGraw- Hill.

25. Sindre G and Opdahl A.L, Technology of Object-Oriented Languages and Systems

(2000), IEEE CS Press.

26. Steward, D V, (1987), Software engineering with systems analysis and design, Belmont

California: Wadsworth, Inc

27. Swanson, E., (2004), The dimensions of maintenance, San Francisco.

28. Taggart W.M, and Silbey V, (1986), Information Systems: People and Computers in

Organizations, Allyn and Bacon, Inc., Boston.

29. Tait, P. and Vessey, I. (1988), The Effect of User Involvement on System Success: A

Contingency Approach. MIS Quarterly.

30. Ulrich, Karl T. and Eppinger, Steven D., Product Design and Development, Second

Edition, (2000), Irwin McGraw-Hill, Boston,

31. Valacich, J.S., George, J. F., and Hoffer, J.A. (2009) Essentials of System Analysis and

Design 4th Ed., Prentice Hall, Upper Saddle River, NJ.

32. Viega J and McGraw G, Building Secure Software, (2001), McGraw-Hill, Inc.

103

33. West Churchman C, the Design of Inquiring Systems: Basic Concepts of Systems and

Organization (1971), Basic Books, New York.

34. Whitten, J. L., Bentley, L. D., and Barlow, V. M. (1994) Systems Analysis and Design

Methods 3rd Ed. Richard D. Irwin, Inc., Burr Ridge, IL.

35. Whitten, J. L., Bentley, L. D., and Dittman, K. C. (2004) Systems Analysis and Design

Methods 6th Ed., McGraw Hill Irwin, Boston.

36. Whitten, J. L., Bentley, L. D., and Ho, T.I.M. (1986) Systems Analysis and Design,

Times Mirror/Mosby College Publishing, St. Louis.

37. Whitten, J.L., and Bentley, L.D. (2008) Introduction to Systems Analysis and Design

1st Ed. McGraw-Hill, Boston.

38. Wiegers, Karl E. (2003), Software Requirements (2nd ed.), Microsoft Press

39. William S. Davis, David C, (1998), The Information System Consultant's Handbook:

Systems Analysis and Design by. Yen CRC Press, CRC Press LLC

Journals

1. Available at: http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1062&context=eispapers.

Accessed Feb 22, 2013.

2. Available at:http://softwarefeasibilitystudy.blogspot.com/2009/07/feasibility-study-

software-engineering.html Accessed 25/02/13

3. Jones N. Telematics systems in primary care. Available at:

http://www.sjsu.edu/faculty/watkins/cba.htm. Accessed Feb 22 2013.

4. Heard S, Grivel T, Schloeffel P and Doust J, The benefits and difficulties of introducing a

national approach to electronic health records in Australia.

5. Software testing http://www.tutorialspoint.com/software_testing/index.htm

http://www.tutorialspoint.com/software_testing/testing_iso_standards.htm ACCESSED

2/04/2013,

6. Mohammad, R. (2006), Dilemma between the structured and object-oriented approaches

to systems analysis and design. The Journal of computer information systems: 32-42.

Accessed 15 March 2013

7. The Royal College of General Practitioners—information sheet, general practice

computerization.

104

 APPENDICES

Appendix A: User Manual

The user manual was designed to familiarize the users with the necessary knowledge of the

NHPIS software without any problems.

Getting Started

1. Go to http://localhost:8080/hris-portal/

2. Enter your Username and Password. Username

Password

Fig A1 Login Page

3. Click Login Button

4. The following screen should appear if Login details are correct:

 Fig A2 Main Menu for the User at Province Main Options for the user

105

5. Searching for a Practitioner

 Type the name or EC Number of the practitioner

Fig A3 Search Practitioner

6. If a user Clicks on the Name of a practitioner the his or her summary is listed Summary

Fig A4 Summary Details

106

7. Downloading static data

 Click the Admin link to navigate to the administrator’s panel and Download all static data

Fig A5 Administrator page

8. Download a specific static data Download Link

 Fig A6 Download Static Data Retired Record

107

9. An administrator can download a practitioner’s data Download Practitioner File

 Fig A7 Download practitioner details

10. The HIO or data capturer adds a practitioner into the system by clicking the create

practitioner link and the Form below is shown. Fill the details and click Next

Fig A8 Create Practitioner Step 1 of 5 form The Zimbabwe National ID is validated

108

11. Step 2 of 5 of Create Practitioner form Add Contact Form Add Address Add Qualification

Fig A9 Step 2 of creating a Practitioner

12. Fill the Contact, Address and qualification and click the Next Validated

Fig A10 Step 3 of 5 of creating a practitioner

109

13. Step 4 of 5 of creating a practitioner Checklist box Tick the checklists and click Next

Fig A11 Step 4 0f 5 Create Practitioner

14. If the data capturer feels he has made a mistake he should click the Back button

Fig A 12 Create Practitioner Step 3 of 5

110

15. Step 5 of 5 is Confirming what the user entered on the form before saving if there is need for

a change just Update or click the Back Button or Cancel Button

Fig A13 Create Practitioner Step 5 of 5

16. After saving a Practitioner’s data the practitioner’s profile is display as below:

Fig A14 Practitioner Profile

111

17. Operations on practitioner data Regrade, Transfer, Promote, add disciplinary e.tc

Fig A15 Operations on practitioner Data

18. Reports: User can click the Report link to view the reports

Fig A16 Reports

112

19. A user can upload a download File with practitioner details

 Click Browse, navigate to the file location, and click import

Fig A17 Upload Form

20. A user can download a practitioner files registered. Specify a period and click Download

Button

Fig A18 Download Form

113

21. A user can change his or her password. Click the change password link

Fig A19 Change user password form

22. The administrator at the national instance can add static data

Fig A20 List Static data form

114

23. Add static data and click Save to save

Fig A21 Add Static data form

 24. Saved successfully alert message

Fig A22 Save record Alert message

115

25. If a naming standard is no longer in use the system allows a user to retire it

Fig A23 Retiring a record

26. Retired fields are shown with a strike through

Fig A24 Retired records

116

27. A user can use the advanced search form to search a practitioner

Fig A25 Advanced Practitioner form

28. Search Results Export to other file formats Search Criteria

Fig A26 Search Results Search Results

117

Appendix B: Interview Guide

SECTION A

Appointment Date…………………………………………………………………………

Agenda…………………………………………………………………………………….

SECTION B: Questions for Health Information Officers in Provinces

1. What are the activities you carry out in you consider manual and need to be automated?

2. Can you give a brief description of the current system and what are the problems are you

currently facing with manual registration of a Practitioner?

3. What do you understand by the term Practitioner Health Informatics Systems?

4. Do you understand the objectives and functionality of National Health Practitioner

Informatics Systems (NHPIS)?

5. What are the key aspects of the proposed system usability or security issues?

6. Will the automation of the manual process make your work easier and how?

7. What kind of reports does the current system produce reports, which requires the reports?

8. Does the introduction of a NHPIS solve the problems of the current system?

SECTION C: Questions for MoHCW Practitioner

1. How frequently do you receive data about practitioners from the Provinces?

2. Do you edit any practitioner data from the provinces?

3. What do you understand by the term Practitioner Health Informatics Systems?

4. What are the problems of the current system?

5. How often do you use the internet, will you be able to use the NHPIS system?

6. What are the types of the reports you need about a practitioner’s data?

7. Will the adoption of NHPIS system solve the problems of the current system?

8. Do you think the new System will improve data quality?

118

Appendix C: Questionnaire Checklist

I am Artwell Mamvura, a student at the Midlands State University in Zimbabwe pursuing a

Degree in Computer Science. One of the requirements for this award is a project research and

fully operating software application that can be implemented by an operating organization. This

questionnaire is designed to find out the requirements for the National Health Practitioner

Informatics System. I therefore kindly request you to assist me with the required information in

this questionnaire. I promise to keep all the given information confidential and highly guard due

rights. Thank you for your cooperation.

Health Information Officer Questionnaire

Qn1 What are the activities you carry out in you consider manual and need to be automated?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Qn2 Can you give a brief description of the current system and what are the problems are you

currently facing with manual registration of a Practitioner?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Qn3 Do you understand the objectives and functionality of National Health Practitioner

Informatics Systems (NHPIS)?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

119

Qn4 What do you understand by the term Practitioner Health Informatics System?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Qn5 What are the key aspects of the proposed system usability or security issues?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Qn6 Will the automation of the manual process make your work easier and how?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Qn7 What kind of reports does the current system produce reports, which requires the reports?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Qn8 Does the introduction of a NHPIS solve the problems of the current system?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Thank you for this great contribution

120

MoHCW Practitioner Questionnaire

Qn1 How frequently do you receive data about practitioners from the Provinces?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Qn2 Do you edit any practitioner data from the provinces?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Qn3 What do you understand by the term Practitioner Health Informatics Systems?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Qn4 What are the problems of the current system?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Qn5 How often do you use the Internet and will you be able to use the proposed system?

 (Tick where appropriate)

Frequently and I will be able to use the system

I will be able to use the system

Sometimes and I will be able to use the system

 Rarely and I won’t be able to use the system

I won’t be able to use the new system

121

Qn6 What are the types of the reports you need about a practitioner’s data?

 (Tick where appropriate)

Adhoc reports

Weekly reports

Monthly reports

Quarterly reports

Yearly reports

Qn7 Do you think the introduction of Practitioner Health Informatics Systems will solve the

problems of the current system?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Qn8 Do you think the new System will improve data quality?

 (Tick where appropriate)

Yes

No

Maybe

 Thank you for this great contribution

122

Appendix D: Observation Score Sheet

Location:………………………………………………………………………

Process Being Observed:………………………………………………………

Date: …………… Time: ……………

Objective of observation:

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Brief description of current system Process:

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Areas of strength:

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Areas that need development:

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

Signed: ……………………………… Date: ………………………………

Signed: ……………………………… Date: ……………………………..

123

Appendix E: Snippet of Code

Code to Connect to the Database

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD

3.0//EN" "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <property name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</property>

 <property name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</property>

 <property name="hibernate.connection.url">jdbc:mysql://localhost:3306/mohhris</property>

 <property name="hibernate.connection.username">root</property>

 <property name="hibernate.connection.password">hiu</property>

</hibernate-configuration>

Java Database Connection to reference from the Application Context File

jdbc.driverClassName=com.mysql.jdbc.Driver

jdbc.url=jdbc:mysql://localhost:3306/mohhris?autoReconnect=true&sessionVariables=storage_e

ngine=InnoDB&useUnicode=true&characterEncoding=UTF-8

jdbc.username=root

jdbc.password=hiu

Application Context File for Dependency Injections

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans" ">

 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"

id="propertyConfigurer" p:location="classpath:org/hris/business/resources/jdbc.properties"/>

<bean class="org.springframework.jdbc.datasource.DriverManagerDataSource" id="dataSource"

p:driverClassName="${jdbc.driverClassName}"p:password="${jdbc.password}"

p:url="${jdbc.url}" p:username="${jdbc.username}"/>

</beans>

124

Code to create Objects from the Database

public class District extends BaseMetaData implements Serializable {

 private static final long serialVersionUID = 1L;

 private String districtId;

 private String districtCode;

 //Constructor

 public District() { }

 @Id

 @Basic(optional = false)

 @Column(name = "district_id", nullable = false, length = 36)

 public String getDistrictId() {

 return districtId;

 }

 public void setDistrictId(String districtId) {

 this.districtId = districtId;

 }

 Method that checks for duplication of records

 public boolean equals(Object obj) {

 if (obj == null) {

 return false;

 }

 if (getClass() != obj.getClass()) {

 return false;

 }

 final District other = (District) obj;

 if ((this.districtId == null) ? (other.districtId != null) : !this.districtId.equals(other.districtId)) {

 return false;

 }

 return true;

 }

125

Method that allows easy sorting of Records in the Database

public int hashCode() {

 int hash = 7;

 hash = 79 * hash + (this.districtId != null ? this.districtId.hashCode() : 0);

 return hash;

 }

 }

Implementation of Generics with Methods to Save, List, Update, Delete, checkDuplicate

Method to List all records in the System

 public List<T> getAll() {

 return getHibernateTemplate().loadAll(this.persistentClass);

 }

Method to List all Distinct records from the Database

 public List<T> getAllDistinct() {

 Collection result = new LinkedHashSet(getAll());

 return new ArrayList(result);

 }

Method to Get an a single record from the Database

 public T get(PK id) {

 T entity = (T) this.getHibernateTemplate().get(this.persistentClass, id);

 if (entity == null) {

 log.warn("Uh oh, '" + this.persistentClass + "' object with id '" + id + "' not found...");

 throw new ObjectRetrievalFailureException(this.persistentClass, id);

 }

 return entity;

 }

126

Method to check if a new record being saved is already in the Database

 public boolean exists(PK id) {

 T entity = (T) getHibernateTemplate().get(this.persistentClass, id);

 return entity != null;

}

Method to Save a record in the Database

 public T save(T object) {

 return (T) getHibernateTemplate().merge(object);

 }

Method to Delete a record from the Database

@Transactional(readOnly = false)

 public void remove(PK id) {

 getHibernateTemplate().delete(this.get(id));

 }

Method to search from the Database

 public List<T> findByNamedQuery(String queryName, Map<String, Object> queryParams) {

 String[] params = new String[queryParams.size()];

 Object[] values = new Object[queryParams.size()];

 int index = 0;

 for (String s : queryParams.keySet()) {

 params[index] = s;

 values[index++] = queryParams.get(s);

 }

 return getHibernateTemplate().findByNamedQueryAndNamedParam(queryName, params,

values);

 }

127

Method to List Deprecated Items in the Database

 @Override

 public List<T> getUnRetiredItems() {

 Criteria criteria =

getHibernateTemplate().getSessionFactory().getCurrentSession().createCriteria(this.persistentCl

ass);

 criteria.addOrder(Order.asc("name"));

 criteria.add(Expression.eq("retired", false));

 criteria.setResultTransformer(Criteria.DISTINCT_ROOT_ENTITY);

 return criteria.list();

 }

}

Method to Display an Admin Page

 @RequestMapping(value = "/index", method = RequestMethod.GET)

 public ModelAndView showIndex(ModelMap model) {

 logger.info("Showing index");

 if (contextUtil.userService.getCurrentUser() == null) {

 logger.info("User not logged in");

 model.addAttribute("notloggedOn", "true");

 return new ModelAndView("login");

 } else {

 logger.info("user logged in");

 contextUtil.getSystemProperty(model);

 return new ModelAndView("index");

 }

 }

}

128

Class For Connecting to the Database For Reports

public class DBConnect {

public static Connection getConnection() {

 Connection jdbcConnection = null;

 try {

 Class.forName("com.mysql.jdbc.Driver");

 jdbcConnection = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/mohhris", "root","");

 } catch (Exception e) {

 e.printStackTrace();

 }

 return jdbcConnection;

 }

}

Class to Validate National ID

public class NationalIdFormats {

 public static String ZIMBABWE="^(\\d{2}-\\d{6,7}-\\w{1}-?\\d{2})$";

 }

Class to Validate Passport Number

public class PassportNumberFormat {

 public static String Zimbabwe = "^(\\w{2}\\d{6}$)";

}

Class to Validate EC Number

public class ECNumberFormats implements Serializable{

 public static String ZIMBABWE="^(\\d{7}[A-Z])$";

}

129

Method to List unSynchronize Practitioner

 public List<Practitioner> getUnpushedPractitioners() {

 return practitionerService.getUnpushedPractitioners();

 }

Method to get Practitioner Details from a Province

 public Practitioner getPractitioner(String practitionerId) {

 return retrievePractitioner(practitionerId);

 }

Advanced Search for a Practitioner

 for (Station s : stationService.stationsInProvince(province)) {

 practitionerList.addAll(practitionerService.getCriteriaSearch(s, practitionerStatus, department,

employmentCartegory, post, employmentType, appointmentTerm));

 }

 } else if (employmentCartegory == null && practitionerStatus == null && post == null &&

department == null && employmentType == null && appointmentTerm == null && station ==

null && district != null && province != null) {

 for (Station s : stationService.stationInDistrict(district)) {

 practitionerList.addAll(practitionerService.getCriteriaSearch(s, practitionerStatus, department,

employmentCartegory, post, employmentType, appointmentTerm));

 }

 } else {

 practitionerList.addAll (practitionerService.getCriteriaSearch (station, practitionerStatus,

department, employmentCartegory, post, employmentType, appointmentTerm));

 }

 model.addAttribute("practitionerList", practitionerList);

 init();

 return "practitioner/search_criteria";

 }

130

Method to convert all Data types to String

 public Practitioner convert(String s) {

 return service.get(s);

 }

Method to Manually Push Practitioner Files

public String manualPush(List<Practitioner> practitioners) {

 int totalPractitionerNo=0;

 int totalStalePractitionerNo=0;

 int totalErrorPractitionerNo=0;

 int totalSavedPractitionerN0=0;

 sb.append(totalEPractitionerNo-totalErrorPractitionerNo-totalStalePractitionerNo);

 sb.append("
\n");

 return sb.toString();

 }

Method to Login into the System for authenticating a user

 public boolean login(String username, String password) {

 try {

 Authentication authenticate = authenticationManager.authenticate(new

UsernamePasswordAuthenticationToken(username, password));

 if (authenticate.isAuthenticated()) {

 SecurityContextHolder.getContext().setAuthentication(authenticate);

 return true;

 }

 } catch (AuthenticationException e) {

 }

 return false;

 }

131

Method to Logout

 public void logout() {

 SecurityContextHolder.getContext().setAuthentication(null);

 }

Code for Exception Handling

public APIException(String message) {

 super(message);

 }

Method to alter depending with instance whether Province or National

<bean clas s= " org.hris.web.config.Hris Portal Instance Config Impl" id="hrisPortalInstance

Config">

 <property name="national" value="false"/>

 </bean>

 Snippet of Code for calling User Interface Pages

 <bean id="viewResolver"

 class="org.springframework.web.servlet.view.InternalResourceViewResolver"

 p:prefix="/WEB-INF/jsp/"

 p:suffix=".jsp" >

</bean>

132

User Login Page

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>HRIS Login</title>

 </head>

 <body onload='document.f.j_username.focus ();'>

 <form id="login" name='f' action="${pageContext.request.contextPath}/loginUser"

method='post'>

 <h1>HRIS Log In</h1>

 <fieldset id="inputs">

 <input id="username" name='username' placeholder="Username" autofocus=""

required="" type="text">

 <input id="password" name='password' placeholder="Password" required=""

type="password">

 <c:if test="${error}">

 Username or password is incorrect

 </c:if>

 <c:if test="${notloggedOn}">

 You are not logged in. Please login.

 </c:if>`

 </fieldset>

 <fieldset id="actions">

 <input id="submit" value="Log in" type="submit">

 </fieldset>

 </form>

 </body>

</html>

